DOI QR코드

DOI QR Code

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing (School of Biological Sciences, Universiti Sains Malaysia) ;
  • Nor, Nik M.I. Mohamed (School of Biological Sciences, Universiti Sains Malaysia) ;
  • Furusawa, Go (Centre for Chemical Biology, Sains@USM, Universiti Sains Malaysia) ;
  • Tharek, Munirah (Soil Science, Water and Fertilizer Research Centre, MARDI) ;
  • Ghazali, Amir H. (School of Biological Sciences, Universiti Sains Malaysia)
  • 투고 : 2022.01.26
  • 심사 : 2022.08.09
  • 발행 : 2022.10.01

초록

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

키워드

과제정보

The authors sincerely thank Universiti Sains Malaysia (USM) for research facilities and the Malaysian Agricultural Research and Development Institute (MARDI) for granting permission to access the study site and providing the rice seeds. The authors also greatly acknowledge Dr. Zarul Hazrin Hashim and Mr. Talha of the School of Biological Sciences, USM, for their assistance in the statistical data analysis.

참고문헌

  1. Ahmad, M., Nangyal, H., Imran, M. and Ullah, F. 2016. Optimization of protocol for surface sterilization and callus induction for three rice varieties. Am. Eurasian J. Agric. Environ. Sci. 16:357-361.
  2. Amir, H. G., Shamsuddin, Z. H., Halimi, M. S., Ramlan, M. F. and Marziah, M. 2001. Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. J. Oil Palm Res. 13:42-49.
  3. Asghar, H. N., Zahir, Z. A., Arshad, M. and Khaliq, A. 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol. Fertil. Soils 35:231-237. https://doi.org/10.1007/s00374-002-0462-8
  4. Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, M. A., Islam, M. Z., Shahidullah, S. M. and Meon, S. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr. J. Biotechnol. 8:1247-1252.
  5. Atkin, C. L., Neilands, J. B. and Phaff, H. J. 1970. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103:722-733. https://doi.org/10.1128/jb.103.3.722-733.1970
  6. Azman, N. A., Sijam, K., Hata, E. M., Othman, R. and Saud, H. M. 2017. Screening of bacteria as antagonist against Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of paddy and as plant growth promoter. J. Exp. Agric. Int. 16:1-15.
  7. Bashan, Y., Holguin, G. and Lifshitz, R. 1993. Isolation and characterization of plant growth-promoting rhizobacteria. In: Methods in plant molecular biology and biotechnology, eds. by B. R. Glick and J. E. Thompson, pp. 331-345. CRC Press, Boca Raton, FL, USA.
  8. Compant, S., Clement, C. and Sessitsch, A. 2010. Plant growthpromoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  9. Csaky, T. Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2:450-454. https://doi.org/10.3891/acta.chem.scand.02-0450
  10. De Souza, J. T., Moura Silva, A. C., de Jesus Santos, A. F., Santos, P. O., Alves, P. S., Cruz-Magalhaes, V., Santos Marbach, P. A. and Loguercio, L. L. 2021. Endophytic bacteria isolated from both healthy and diseased Agave sisalana plants are able to control the bole rot disease. Biol. Control 157:104575.
  11. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  12. Elekhtyar, N. 2016. Efficiency of Pseudomonas fluorescens as plant growth-promoting rhizobacteria (PGPR) for the enhancement of seedling vigor, nitrogen uptake, yield and its attributes of rice (Oryza sativa L.). Int. J. Sci. Res. Agric. Sci. 2:57-67.
  13. Elixon, S., Asfaliza, R., Othman, O., Siti Norsuha, M., Maisarah, M. S., Allicia, J. and Shahida, H. 2017. Evaluation on yield, yield component and physico-chemicals of advanced rice lines. J. Trop. Agric. Food Sci. 45:131-143.
  14. El-shakh, A. S. A., Kakar, K. U., Wang, X., Almoneafy, A. A., Ojaghian, M. R., Li, B., Anjum, S. I. and Xie, G. I. 2015. Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterial Bacillus strains. Toxicol. Environ. Chem. 97:766-785. https://doi.org/10.1080/02772248.2015.1066176
  15. El-Tarabily, K. A., Soliman, M. H., Nassar, A. H., Al-Hassani, H. A., Sivasithamparam, K., McKenna, F. and Hardy, G. E. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49:573-583. https://doi.org/10.1046/j.1365-3059.2000.00494.x
  16. Fira, D., Dimkic, I., Beric, T., Lozo, J. and Stankovic, S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285:44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  17. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  18. Freeman, B. C. and Beattie, G. A. 2008. An overview of plant defenses against pathogens and herbivores. Plant Health Instr. Online publication. https://doi.org/10.1094/PHII-2008-0226-01.
  19. Glick, B. R., Cheng, Z., Czarny, J. and Duan, J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119:329-339. https://doi.org/10.1007/s10658-007-9162-4
  20. Gnanamanickam, S. S. 2009. Biological control of rice diseases. Springer, Dallas, TX, USA. 120 pp.
  21. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26:192-195. https://doi.org/10.1104/pp.26.1.192
  22. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
  23. Hastuti, R. D., Lestari, Y., Suwanto, A. and Saraswati, R. 2012. Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J. Biosci. 19:155-162. https://doi.org/10.4308/hjb.19.4.155
  24. Hu, X., Chen, J. and Guo, J. 2006. Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol. 22:983-990. https://doi.org/10.1007/s11274-006-9144-2
  25. Huang, J., Wei, Z., Tan, S., Mei, X., Yin, S., Shen, Q. and Xu, Y. 2013. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl. Soil Ecol. 72:79-84. https://doi.org/10.1016/j.apsoil.2013.05.017
  26. Hussein, K. A. and Joo, J. H. 2014. Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils. Curr. Microbiol. 68:717-723. https://doi.org/10.1007/s00284-014-0530-y
  27. International Rice Research Institute. 2002. Standard evaluation system for rice (SES): find out how the qualities of rice are evaluated and scored in this authoritative sourcebook. URL http://www.knowledgebank.irri.org/images/docs/ricestandard-evaluation-system.pdf [24 March 2022].
  28. Ji, G.-H., Wei, L.-F., He, Y.-Q., Wu, Y.-P. and Bai, X.-H. 2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biol. Control 45:288-296. https://doi.org/10.1016/j.biocontrol.2008.01.004
  29. Jiao, X., Takishita, Y., Zhou, G. and Smith, D. L. 2021. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front. Plant Sci. 12:634796.
  30. Kloepper, J. W., Tuzun, S. and Kuc, J. A. 1992. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2:349-351. https://doi.org/10.1080/09583159209355251
  31. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  32. Li, B., Xu, L. H., Lou, M. M., Li, F., Zhang, Y. D. and Xie, G. L. 2008. Isolation and characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima. Lett. Appl. Microbiol. 46:450-455. https://doi.org/10.1111/j.1472-765X.2008.02337.x
  33. Louden, B. C., Haarmann, D. and Lynne, A. M. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12:51-53. https://doi.org/10.1128/jmbe.v12i1.249
  34. Manivannan, M. 2011. Effect of PGPR as biofertilizer on growth and yield of rice. Int. J. Pharm. Biol. Sci. Arch. 2:1729-1734.
  35. Meah, M. B. 1987. Effect of nitrogen and plant spacing on bacterial leaf blight of rice. In: Plant pathogenic bacteria: Proceedings of the Sixth International Conference on Plant Pathogenic Bacteria, eds. by E. L. Civerolo, A. Collmer, R. E. Davis and A. G. Gillaspie, pp. 950-954. Springer, Dordrecht, Netherlands.
  36. Nagendran, K., Karthikeyan, G., Peeran, M. F., Raveendran, M., Prabakar, K. and Raguchander, T. 2013. Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl. Sci. J. 28:2229-2241.
  37. Nautiyal C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  38. Neufeld, H. S., Chappelka, A. H., Somers, G. L., Burkey, K. O., Davison, A. W. and Finkelstein, P. L. 2006. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynth. Res. 87:281-286. https://doi.org/10.1007/s11120-005-9008-x
  39. Ngalimat, M. S., Mohd Hata, E., Zulperi, D., Ismail, S. I., Ismail, M. R., Mohd Zainudin, N., Saidi, N. B. and Yusof, M. T. 2021. Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms 9:682.
  40. Overvoorde, P., Fukaki, H. and Beeckman, T. 2010. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2:a001537.
  41. Patten, C. L. and Glick, B. R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  42. Purahong, W., Orru, L., Donati, I., Perpetuini, G., Cellini, A., Lamontanara, A., Michelotti, V., Tacconi, G. and Spinelli, F. 2018. Plant microbiome and its link to plant health: host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants. Front. Plant Sci. 9:1563.
  43. Qiao, J., Yu, X., Liang, X., Liu, Y., Borriss, R. and Liu, Y. 2017. Addition of plant-growth-promoting Bacillus subtilis PTS394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 17:131.
  44. Radhakrishnan, R., Hashem, A. and Abd Allah, E. F. 2017. Bacillus: a biological tool for crop improvement through biomolecular changes in adverse environments. Front. Physiol. 8:667.
  45. Rais, A., Jabeen, Z., Shair, F., Hafeez, F. Y. and Hassan, M. N. 2017. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 12:e0187412.
  46. Rajamoorthy, Y., Abdul Rahim, K. and Munusamy, S. 2015. Rice industry in Malaysia: challenges, policies and implications. Procedia Econ. Financ. 31:861-867. https://doi.org/10.1016/S2212-5671(15)01183-1
  47. Rioux, C., Jordan, D. C. and Rattray, J. B. 1983. Colorimetric determination of catechol siderophores in microbial cultures. Anal. Biochem. 133:163-169. https://doi.org/10.1016/0003-2697(83)90238-5
  48. Rudrappa, T., Czymmek, K. J., Pare, P. W. and Bais, H. P. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:1547-1556. https://doi.org/10.1104/pp.108.127613
  49. Saad, A. 1995. Resistance of rice varieties with different gene(s) for resistance against Xanthomonas oryzae in peninsular Malaysia. In: Malaysian Science and Technology Congress, pp. 22-24. Malaysian Science and Technology Information Centre, Putrajaya, Malaysia.
  50. Saad, A. and Habibuddin, H. 2010. Pathotypes and virulence of Xanthomonas oryzae causing bacterial blight disease of rice in Peninsular Malaysia. J. Trop. Agric. Food Sci. 38:257-266.
  51. Saharan, B. S. and Nehra, V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 2011:LSMR-21.
  52. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  53. Sarwar, A., Hassan, M. N., Imran, M., Iqbal, M., Majeed, S., Brader, G., Sessitsch, A. and Hafeez, F. Y. 2018. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol. Res. 209:1-13. https://doi.org/10.1016/j.micres.2018.01.006
  54. Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M. and Chincholkar, S. B. 2005. Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Indian J. Biotechnol. 4:484-490.
  55. Shafi, J., Tian, H. and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31:446-459. https://doi.org/10.1080/13102818.2017.1286950
  56. Shakeel, M., Rais, A., Hassan, M. N. and Hafeez, F. Y. 2015. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front. Microbiol. 6:1286.
  57. Shanmugaiah, V., Nithya, K., Harikrishnan, H., Jayaprakashvel, M. and Balasubramanian, N. 2016. Biocontrol mechanisms of siderophores against bacterial plant pathogens. In: Sustainable approaches to controlling plant pathogenic bacteria, eds. by V. R. Kannan and K. K. Bastas, pp. 168-181. CRC Press, Boca Raton, FL, USA.
  58. Shenker, M., Oliver, I., Helmann, M., Hadar, Y. and Chen, Y. 1992. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr. 15:2173-2182. https://doi.org/10.1080/01904169209364466
  59. Shivalingalah and Umesha, S. 2013. Pseudomonas fluorescens inhibits the Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Can. J. Plant Prot. 1:147-153.
  60. Siddiqui, I. A. and Shaukat, S. S. 2003. Endophytic bacteria: prospects and opportunities for the biological control of plantparasitic nematodes. Nematol. Mediterr. 31:111-120.
  61. Smith, D. L., Praslickova, D. and Ilangumaran, G. 2015. Interorganismal signaling and management of the phytomicrobiome. Front. Plant Sci. 6:722.
  62. Snow, G. A. 1954. Mycobactin. A growth factor for Mycobacterium johnei part II. Degradation and identification of fragments. J. Chem. Soc. 49:2588-2596. https://doi.org/10.1039/jr9540002588
  63. Suarez-Moreno, Z. R., Vinchira-Villarraga, D. M., VergaraMorales, D. I., Castellanos, L., Ramos, F. A., Guarnaccia, C., Degrassi, G., Venturi, V. and Moreno-Sarmiento, N. 2019. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front. Microbiol. 10:290.
  64. Trivedi, P., He, Z., Van Nostrand, J. D., Albrigo, G., Zhou, J. and Wang, N. 2012. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 6:363-383. https://doi.org/10.1038/ismej.2011.100
  65. Vassilev, N., Vassileva, M. and Nikolaeva, I. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl. Microbiol. Biotechnol. 71:137-144. https://doi.org/10.1007/s00253-006-0380-z
  66. Widiantini, F., Herdiansyah, A. and Yulia, E. 2017. Biocontrol potential of endophytic bacteria isolated from healthy rice plant against rice blast disease (Pyricularia oryzae Cav.). KnE Life Sci. 2:287-295. https://doi.org/10.18502/kls.v2i6.1051
  67. Win, K. T., Oo A. Z. O., Ohkama-Ohtsu, N. and Yokoyama, T. 2018. Bacillus pumilus strain TUAT-1 and nitrogen application in nursery phase promote growth of rice plants under field conditions. Agronomy 8:216.
  68. Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q. and Zhang, R. 2018. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol. Plant-Microbe Interact. 31:560-567. https://doi.org/10.1094/MPMI-11-17-0273-R
  69. Yadeta, K. A. and Thomma, B. P. J. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4:97.
  70. Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H., Zubair, M. and Iqbal, M. 2017. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8:1895.
  71. Yasmin, S., Zaka, A., Imran, A., Zahid, M. A., Yousaf, S., Rasul, G., Arif, M. and Mirza, M. S. 2016. Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS ONE 11:e0160688.
  72. Yoshida, S., Forno, D. A., Cock, J. H. and Gomez, K. A. 1976. Laboratory manual for physiological studies of rice. URL https://pdf.usaid.gov/pdf_docs/PNAAE519.pdf [24 March 2022].
  73. Yuan, Y., Feng, H., Wang, L., Li, Z., Shi, Y., Zhao, L., Feng, Z. and Zhu, H. 2017. Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS ONE 12:e0170557.
  74. Zhang, Y., Lubberstedt, T. and Xu, M. 2013. The genetic and molecular basis of plant resistance to pathogens. J. Genet. Genomics 40:23-35. https://doi.org/10.1016/j.jgg.2012.11.003
  75. Zou, H., Zhao, W., Zhang, X., Han, Y., Zou, L. and Chen, G. 2010. Identification of an avirulence gene, avrxa5, from the rice pathogen Xanthomonas oryzae pv. oryzae. Sci. China Life Sci. 53:1440-1449. https://doi.org/10.1007/s11427-010-4109-y