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ON ALMOST QUASI-COHERENT RINGS AND ALMOST
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Abstract. Let R be a commutative ring with identity. We call the ring

R to be an almost quasi-coherent ring if for any finite set of elements
a1, . . . , ap and a of R, there exists a positive integer m such that the

ideals
⋂p

i=1 Rami and AnnR(am) are finitely generated, and to be almost
von Neumann regular rings if for any two elements a and b in R, there

exists a positive integer n such that the ideal (an, bn) is generated by

an idempotent element. This paper establishes necessary and sufficient
conditions for the Nagata’s idealization and the amalgamated algebra to

inherit these notions. Our results allow us to construct original examples

of rings satisfying the above-mentioned properties.

1. Introduction

Throughout this paper, all rings are commutative with identity and all mod-
ules are unital. If A is a ring,

√
I denotes the radical of an ideal I of A, in

the sense of [23]; Nil(A) :=
√

0 the set (ideal) of all nilpotent elements of A;
Idem(A) the set of all idempotent elements of A and AnnA(E) := Ann(E)
denotes the annihilator of an A-module E.

In 1960, according to Chase [7], R is a coherent domain if and only if the
intersection of any two finitely generated ideals is again finitely generated. In
1973, Dobbs [14] introduced the concept of “finite conductor domain” in which
every intersection of two principal ideals is a finitely generated ideal. Quasi-
coherent a property intermediate between coherence and finite conductor de-
fined by Barucci, Anderson and Dobbs (see [4]). A domain R is a quasi-coherent
if each intersection of finitely many principal ideals of R is finitely generated.
Coherent domains and Greatest Common Divisor GCD-domains (such that
the intersection of any two principal ideals is again principal) are trivial ex-
amples of quasi-coherent domains. In 2000, Glaz extended the definition of
quasi-coherent domains to rings with zero divisors, that is, the intersection of
finitely many principal ideals of R is finitely generated and AnnR(a) is finitely
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generated for every element a of R [17], and latter further studied by many
authors (see for instance [17, 22]). Moreover, the conception of von Neumann
regular rings occurred in 1936 when John von Neumann defined a regular ring
as a ring R (associative, with 1, not necessarily commutative) with the prop-
erty that for each a ∈ R there exists b ∈ R such that a = aba [29]. In order
to distinguish these rings from the regular Noetherian rings of commutative
algebra, noncommutative ring theorists have added von Neumann’s name as a
modifier. Regular rings are homologically characterized as those rings for which
all modules (left or right) are flat (see for instance [3, 18]). Accordingly, the
Bourbakian school refers to regular rings as absolutely flat rings. Commutative
regular rings may be characterized in many ways: (i) rings in which all prime
ideals are maximal and their nilradical are zeros; (ii) rings for which all simple
modules are injective [28]; (iii) rings for which localization at any maximal ideal
yields a field [28]; (iv) the polynomial ring in one variable is semi-hereditary
(see [6,25]). Further, R. S. Pierce’s 1967 Memoir [27], amply demonstrated the
rich connection between the theory of sheaves and commutative regular rings.
We introduce a new concept of an “almost von Neumann regular ring”. A ring
R is an almost von Neumann regular ring (AVN-ring for short) if, for any two
elements a and b in R, there exists a positive integer n such that the ideal
(an, bn) is generated by an idempotent element. A von Neumann regular ring
is naturally an AVN-ring.

Let A be a ring and E an A-module. The trivial ring extension of A by E
(also called idealization of E over A) is the ring R := AnE whose underlying
group is A × E with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + ea′).
Trivial ring extensions have been studied extensively; and considerable work,
which is summarized in Glaz’s book [16] and Huckaba’s book [19], has been
concerned with these extensions. Mainly, trivial ring extensions have been
useful for solving many open problems and conjectures in both commutative
and non-commutative ring theory. See for instance [2, 19,21,22].

Let A and B be two rings with identity elements, J be an ideal of B, and
f : A −→ B be a ring homomorphism. In this setting, we consider the subring
of A × B, A ./f J := {(a, f(a) + j) : a ∈ A, j ∈ J} called the amalgamation
of A and B along J with respect to f . This construction is a generalization of
the amalgamated duplication of a ring along an ideal (introduced and studied
by D’Anna and Fontana in [9, 12, 13]). Moreover, other classical constructions
(such as A+XB[X], A+XB[[X]], and the D+M constructions) can be studied
as particular cases of the amalgamation ([10, Examples 2.5 and 2.6]). Other
classical constructions, such as the Nagata idealization, also called trivial ring
extension [26, p. 2], and the CPI extensions (in the sense of Boisen and Sheldon
[5]) are strictly related to it [10, Example 2.7 and Remark 2.8]. Unreferenced
material is standard as in [15].

The purpose of this paper is to investigate the possible transfer of the notions
of almost quasi-coherent rings and almost von Neumann regular rings to various
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context of trivial ring extensions and amalgamated. Examples of almost quasi-
coherent rings are quasi-coherent rings and almost GCD-domains (i.e., for all
a, b ∈ R there exists an n ∈ N such that anR ∩ bnR is principal). The latter
introduced by Zafrullah in [30] as a generalization of GCD-domains.

2. On AQC-ring property

Definition 2.1. Let R be a ring. R is called an almost quasi-coherent ring
(AQC-ring) if, for any finite set of elements a1, . . . , an and a of R, there exists
a positive integer m such that the ideals

⋂n
i=1Ra

m
i and AnnR(am) are finitely

generated.

The first result of this section, inverstigates the possible transfer of the
almost quasi-coherent property to various trivial extension contexts. Recall
that a module over a domain is divisible if each element of the module is
divisible by every nonzero element of the domain.

Theorem 2.1. Let A be a ring, E be a nonzero A-module, and R := An E.

(1) If R is an AQC-ring, then A is an AQC-ring.
(2) Suppose that A is a domain and E is a divisible A-module. Then R is

an AQC-ring if and only if for all ((ai)1≤i≤n, a) ∈ An×Ar {0}, there
exists positive integer m such that

⋂n
i=1Aa

m
i is a finitely generated ideal

of A (i.e., A is an AQC-ring) and AnnE(am) is a finitely generated
submodule of E.

(3) Let A be a local ring with maximal ideal M , and E be a finitely gener-

ated A-module such that M =
√
AnnA(E). Then R is an AQC-ring if

and only if so is A.

Proof. (1) Suppose that R is an AQC-ring, and let ((ai)1≤i≤n, a) ∈ An × A
for some integer n ≥ 2. Then there exists a positive integer m such that⋂n

i=1R(ai, 0)m =
⋂n

i=1R(ami , 0) is a finitely generated ideal of R. Hence,⋂n
i=1Aa

m
i is a finitely generated ideal of A. Further, obviously AnnR(am, 0) =

AnnA(am) nAnnE(am) is finitely generated. Hence, A is an AQC-ring.
(2) Suppose that R is an AQC-ring and A is a domain. Let ((ai)1≤i≤n, a) ∈

An×Ar{0}. With a similar arguments used in the proof of (1) lead to the factA
is an AQC-ring and AnnR(am, 0) = 0 ∝ AnnE(am), and therefore AnnE(am) is
a finitely generated submodule of E. Conversely, let ((ai, ei)

i=n
i=1 , (b, f)) ∈ Rn+1

for some positive integer n. We will show that it exists a positive integer m
such that

⋂n
i=1R(ai, ei)

m and (0 : (b, f)m) are finitely generated ideals of R.
Four cases are possibles:

Case 1. If there exists i ∈ {1, . . . , n} such that ai = 0 and b = 0, it suffices
to take m = 2.

Case 2. If there exists i ∈ {1, . . . , n} such that ai = 0 and b 6= 0. First,
notice that (a, e)n = (an, nan−1e) for all n ≥ 1. Since b2 6= 0, there exists
a positive integer p such that AnnE(b2p) is a finitely generated submodule
of E (by hypothesis). Moreover, one can easily check AnnR((b, f)2p) = 0 n
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AnnE(b2p). Hence,
⋂n

i=1R(ai, ei)
2p = R(0, 0) and AnnR((b, f)2p) are finitely

generated ideals of R.
Case 3. If ai 6= 0 for all i ∈ {1, . . . , n} and b = 0, then a2i 6= 0 for all

i ∈ {1, . . . , n} (since A is a domain) and b2 = 0. But since A is an AQC-

ring, there exists a positive integer p such that
⋂n

i=1Aa
2p
i =

∑r
j=1Acj , where

cj ∈
⋂n

i=1Aa
2p
i for every j ∈ {1, . . . , r}. Let y ∈

⋂n
i=1R(ai, ei)

2p. It is easily
seen that y is written in the form y = (

∑r
j=1 αjcj , z) = (α1c1, z) + (α2c2, 0) +

· · ·+ (αrcr, 0), where αj ∈ A for every j ∈ {1, . . . , r} and z ∈ E. By divisibility
assumption, we obtain z = c1β for some β ∈ E. Hence y = (α1, β)(c1, 0) +
(α2c2, 0) + · · · + (αrcr, 0). Therefore,

⋂n
i=1R(ai, ei)

2p ⊆
∑r

j=1R(cj , 0). For

the reverse inclusion, we have cj ∈
⋂n

i=1Aa
2p
i for all j ∈ {1, . . . , r}. So, there

exist αj,1, αj,2,. . . ,αj,n such that cj = αj,1a
2p
1 = αj,2a

2p
2 = · · · = αj,na

2p
n for all

j ∈ {1, . . . , r}. Further, by divisibility, we obtain for each j ∈ {1, . . . , r}:
αj,12pa2p−11 e1 − kj,1a2p1 = 0,

αj,22pa2p−12 e2 − kj,2a2p2 = 0,
...

αj,n2pa2p−1n en − kj,na2pn = 0

for some kj,1, kj,2, . . . , kj,n ∈ E. Hence

(cj , 0) = (αj,1,−kj,1)(a1, e1)2p

= · · · = (αj,n,−kj,n)(an, en)2p ∈
n⋂

i=1

R(ai, ei)
2p.

Thus,
⋂n

i=1R(ai, ei)
2p =

∑r
j=1R(cj , 0) and AnnR((b, f)2p) = R are finitely

generated ideals of R.
Case 4. Suppose ai 6= 0 for all i ∈ {1, . . . , n} and b 6= 0. In this

case, there exists a positive integer p such that
⋂n

i=1Aa
p
i =

∑r
j=1Acj , where

cj ∈
⋂n

i=1Aa
p
i for every j ∈ {1, . . . , r} and AnnE(bp) is a finitely generated

submodule of E. With a similar argument of the proof of Case 2 and Case 3, we
get that

⋂n
i=1R(ai, ei)

p =
∑r

j=1R(cj , 0) and AnnR((b, f)p) = 0 n AnnE(bp).

Hence,
⋂n

i=1R(ai, ei)
p and AnnR((b, f)p) are finitely generated ideals of R. It

follows that R is an AQC-ring.
(3) Suppose that (A,M) is a local ring, and assume that E is a finitely

generated A-module. If R is an AQC-ring, then so is A by (1). Conversely,
let ((ai, ei)

i=n
i=1 , (b, f)) ∈ Rn+1 for some n ≥ 2. If there exists i ∈ {1, . . . , n}

such that ai is a unit of A, then (ai, ei) is a unit of R by [19, Theorem 25.1].
So, R(ai, ei)

s = (R(ai, ei))
s = Rs for all integer s ≥ 1. Thus, we may assume

without loss of generality, that the ai are in M for each i ∈ {1, . . . , n}. As

M =
√
AnnA(E), there exist positive integers ni such that ani

i ∈ Ann(E).
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Then for each i ∈ {1, . . . , n}, we get:

(ai, ei)

n∏
j=1

nj+1

= (a

n∏
j=1

nj+1

i , (

n∏
j=1

nj + 1)a

n∏
j=1

nj

i ei) = (a

n∏
j=1

nj+1

i , 0) and

(b, f)

n∏
j=1

nj+1

= (b

n∏
j=1

nj+1

, (

n∏
j=1

nj + 1)b

n∏
j=1

nj

f),

where j ∈ {1, . . . , n}. Since A is an AQC-ring, there exists a positive inte-

ger p such that
⋂n

i=1Aa
(

n∏
j=1

nj+1)p

i and (0 : b
(

n∏
j=1

nj+1)p

) are finitely generated

ideals of A. If b
(

n∏
j=1

nj+1)p

is a unit of A, then
⋂n

i=1R(ai, ei)
(

n∏
j=1

nj+1)p

and

(0 : (b, f)
(

n∏
j=1

nj+1)p

) = (0 : (b
(

n∏
j=1

nj+1)P

, (
n∏

j=1

nj + 1)pb
((

n∏
j=1

nj+1)p)−1
f)) are

finitely generated ideals of R; and so we are done. Suppose on the contrary,

b
(

n∏
j=1

nj+1)p

∈M . So, there exists a positive integer m such that b
(

n∏
j=1

nj+1)pm

∈
Ann(E). Then for each i ∈ {1, . . . , n}, we get:

(ai, ei)
(

n∏
j=1

nj+1)pm

= (a
(

n∏
j=1

nj+1)pm

i , ((

n∏
j=1

nj + 1)pm)a
((

n∏
j=1

nj+1)pm)−1

i ei)

= (a
(

n∏
j=1

nj+1)pm

i , 0)

and

(b, f)
(

n∏
j=1

nj+1)pm

= (b
(

n∏
j=1

nj+1)pm

, ((

n∏
j=1

nj + 1)pm)b
((

n∏
j=1

nj)pm)−1
f)

= (b
(

n∏
j=1

nj+1)pm

, 0).

Since A is an AQC-ring, there exists a positive integer r such that⋂n
i=1Aa

(
n∏

j=1
nj+1)mpr

i and (0 : b
(

n∏
j=1

nj+1)mpr

) are finitely generated ideals of
A. Therefore,

n⋂
i=1

R(ai, ei)
(

n∏
j=1

nj+1)mpr

and (0 : (b, f)
(

n∏
j=1

nj+1)mpr

) = (0 : b
(

n∏
j=1

nj+1)mpr

) ∝ E

are finitely generated ideals of R. �

Remark 1. The condition that E is a finitely generated A-module is not nec-
essary in Theorem 2.1(3) (see Example 1).

As immediate corollaries of this theorem, we have the following results.
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Corollary 2.1. Let A be a domain, E a divisible Noetherian A-module, and
R := A n E the trivial ring extension of A by E. Then R is an AQC-ring if
and only if so is A.

Corollary 2.2. Let A be a local ring with maximal ideal M , E a finitely
generated nonzero A-module such that ME = 0, and R := A n E the trivial
ring extension of A by E. Then R is an AQC-ring if and only if so is A.

The theorem above enable us to construct examples of AQC-rings which
are not quasi-coherent rings. Recall that a ring R is a quasi-coherent ring if⋂n

i=1Rai and (0 : a) are finitely generated of R for any finite set of elements
a1, . . . , an and a of R [17].

Example 1. Let R denote the field of real numbers and let R := RnR[X] be
the trivial extension ring of R by the polynomial ring R[X]. Then:

(1) R is an AQC-ring by Theorem 2.1(2), since AnnR[X](r) = 0 for each
r ∈ Rr {0}.

(2) R is not a quasi-coherent ring. Indeed, let c := (0, 1) ∈ R. It can easily
be seen that (0 : c) = 0 ∝ R[X] which is not finitely generated.

Example 2. Let (A,M) be a nondiscrete valuation domain. Then R := A n
A/M satisfies the following statements:

(1) R is an AQC-ring by Corollary 2.2.
(2) R is not a quasi-coherent ring by [22, Theorem 2.6] since M is not a

finitely generated ideal of A.

The next result establishes the transfer of almost quasi-coherent property to
amalgamation of rings.

Proposition 2.1. Let f : A → B be a ring homomorphism, J an ideal of B
and R := A ./f J .

(1) If R is an AQC-ring, then A is an AQC-ring.
(2) Suppose that A is a local ring with maximal ideal M such that f(M)J =

0 and J ⊆ Nil(B). Then, R is an AQC-ring if and only if so is A and
J is a finitely generated A-module.

Proof. (1) Suppose that R is an AQC-ring, and let ((ai)1≤i≤n, b) ∈ An+1

for some integer n ≥ 2. Then there exists a positive integer m such that
the ideals

⋂n
i=1R(ai, f(ai))

m =
⋂n

i=1R(ami , f(ami )) and AnnR(bm, f(bm)) =
AnnA(bm) ./f AnnB(f(bm)) ∩ J are finitely generated ideals of R. Therefore,⋂n

i=1Aa
m
i and AnnA(bm) are finitely generated ideals of A, and hence A is an

AQC-ring.
(2) Assume that A is a local ring with maximal ideal M such that f(M)J =

0. Let ((ai)1≤i≤n, b) ∈ An×M r{0}. With a similar argument as in the state-
ment (1), we get AnnR(bm, f(bm)) = AnnA(bm) ./f J , and therefore J is a
finitely generated A-module. Conversely, let ((ai, f(ai) + ei)1≤i≤n, (b, f(b) +
k)) ∈ Rn+1. We will show that it exists a positive integer m such that
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i=1R(ai, f(ai) + ei)

m and AnnR((b, f(b) + k))m are finitely generated. First,
not that if there exists i ∈ {1, . . . , n} such that ai is an invertible element in
A, then (ai, f(ai) + ei) so is in R by [20, Lemma 3.3]. So, R(ai, f(ai) + ei)

s =
(R(ai, f(ai) + ei))

s = Rs for all integer s ≥ 1. Moreover, if b is a unit of
A, then AnnR((b, f(b) + k)s) = 0 for all integer s ≥ 1, since (b, f(b) + k)
is a regular element of R. Thus, we may assume without loss of generality,
that both ai and b are in M for each i ∈ {1, . . . , n}. But since ei, k ∈ J
for each i ∈ {1, . . . , n}, there exist a positives integers ni and m such that
eni
i = 0 and km = 0. As A is an AQC-ring, there is a positive integer p

such that
⋂n

i=1Aa
pm

n∏
j=1

nj

i =
∑q

l=1Acl where cl ∈ A for each l ∈ {1, . . . , q}

and AnnA(b
pm

n∏
j=1

nj

) is finitely generated in A. By applying binomial theo-
rem (which is valid in any commutative ring), we get that

⋂n
i=1R(ai, f(ai) +

ei)
pm

n∏
j=1

nj

=
⋂n

i=1R(ai, f(ai))
pm

n∏
j=1

nj

. Hence
⋂n

i=1R(ai, f(ai)+ei)
pm

n∏
j=1

nj

=∑q
l=1R(cl, f(cl)), it remains to show that AnnR((b, f(b)+k)

pm
n∏

j=1
nj

) is finitely

generated in R. Indeed, if b = 0, then AnnR((b, f(b) + k)
pm

n∏
j=1

nj

) = R. Next,
assume b 6= 0. In this case,

AnnR((b, f(b) + k)
pm

n∏
j=1

nj

) = AnnR(b
pm

n∏
j=1

nj

, f(b
pm

n∏
j=1

nj

))

= AnnA(b
pm

n∏
j=1

nj

) ./f J

which is finitely generated (since by hypothesis J is a finitely generated A-
module). �

Proposition 2.1 enriches the literature with original examples of AQC-rings
which are not quasi-coherent rings.

Example 3. Let A := R n R[X] and M := 0 n R[X]. Set B := A n A/M
and J := 0 n A/M . Consider the homomorphism f : A ↪→ B, (f(a) = (a, 0)).
Then:

(1) A ./f J is an AQC-ring.
(2) A ./f J is not a quasi-coherent ring.

Proof. (1) It follows from Proposition 2.1(2).
(2) A ./f J is not a finite conductor ring by [20, Theorem 2.1(2)] since

M := 0 n R[X] is not a finitely generated ideal of A, so that A ./f J is not a
quasi-coherent ring. �
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3. On AVN-ring property

Definition 3.1. A ring R is an almost von Neumann regular (AVN-ring for
short) if for any two elements a and b in R, there exists a positive integer n
such that the ideal (an, bn) is generated by an idempotent element.

Recall that a ring R is called von Neumann regular if every finitely generated
ideal is generated by an idempotent element.

Clearly, a von Neumann regular ring is an AVN-ring, while the converse
fails; e.g., Z/4Z.

Our first result investigates the transfer of AVN-ring to trivial ring extension
A n E in case (A,M) is a local ring (with maximal ideal M) and E is an A-

module such that M =
√
Ann(E).

Theorem 3.1. Let A be a ring, E a nonzero A-module, and R := A n E.
Then, the following statements hold:

(1) If R is an AVN-ring, then so is A.
(2) Let (A,M) be a local ring (with maximal ideal M) and let E be an

A-module such that M =
√
Ann(E). Then R is an AVN-ring if and

only if A is an AVN-ring.

Proof. (1) Assume that R is an AVN-ring, and let a, b ∈ A. Then, (a, 0),
(b, 0) ∈ A n E and so there exist n ∈ N and e ∈ Idem(A) such that the
ideal R((a, 0)n, (b, 0)n) = R(a, 0)n + R(b, 0)n = R(an, 0) + R(bn, 0) = R(e, 0).
Therefore, A(an, bn) = Aan +Abn = Ae, and hence A is an AVN-ring.

(2) By (1), we need only prove that if A is an AVN-ring, along with the

hypothesis that M =
√
Ann(E), then R is an AVN-ring. Let (a, e), (b, f) ∈ R.

Two cases are then possible:
Case 1: a or b /∈M . Then a or b is invertible in A. Assume without loss of

generality that a is invertible. Then (a, e) is a unit in R by [19, Theorem 25.1],
so that R(a, e) +R(b, f) = R(a, e) = R(1, 0).

Case 2: a and b ∈ M . Using the fact that M =
√
Ann(E), then there

exist positive integers n and m such that an ∈ Ann(E) and bm ∈ Ann(E).
Therefore, (a, e)nm+1 = (anm+1, (nm+1)anme) = (anm+1, 0) and (b, f)nm+1 =
(bnm+1, (nm + 1)bnmf) = (bnm+1, 0). As A is an AVN-ring, there exists a
positive integer s such that Aa(nm+1)s+Ab(nm+1)s = Ae for some e ∈ Idem(A).
Thus, R(anm+1, 0)s + R(bnm+1, 0)s = R(e, 0) since an ∈ Ann(E) and bm ∈
Ann(E), and this completes the proof. �

The next result shows that the characterization for AnE to be AVN-ring can
be reconducted to the case where (A,M) is a local ring and E is an A-module
such that ME = 0.

Proposition 3.1. Let (A,M) be a local ring, E an A-module such that ME =
0, and R := An E. Then R is an AVN-ring if and only if A is an AVN-ring.
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Proof. We may assume without loss of generality, that E 6= 0. Then Ann(E) 6=
A, hence M =

√
Ann(E), and so an application of Theorem 3.1(2) completes

the proof. �

Next, as an illustrative example for Theorem 3.1 and Proposition 3.1, we
provide a new example of AVN-ring which arises as a trivial ring extension.

Example 4. Let A be a von Neumann local ring with maximal ideal M ,
E = (A/M)∞, where (A/M)∞ is an infinite-dimensional (A/M)-vector space,
and R := An E be the trivial ring extension of A by E. Then:

(1) R is an AVN-ring by Proposition 3.1.
(2) R is not a von Neumann regular ring by [24, Theorem 2.1(2)].

Now, we turn our attention to the transfer of the AVN-ring property to
amalgamation of rings A ./f J . It is easy to see that, if J = 0, then A ./f

J ' A, and so A ./f J is an AVN-ring if and only if so is A. If J = B, then
A ./f J = A×B is an AVN-ring if and only if so is A and B. We assume now
that J is a nonzero proper ideal of B.

Theorem 3.2. Let A and B be a pair of rings, f : A→ B be a ring homomor-
phism and J be a nonzero proper ideal of B. Then, the following statements
hold:

(1) If A ./f J is an AVN-ring, then so are A and f(A) + J .
(2) Assume that A is a local ring with maximal ideal M such that f(M)J =

0 and J ⊆ Nil(B). Then A ./f J is an AVN-ring if and only if A is
an AVN-ring.

To prove this theorem, we need the following lemma.

Lemma 3.1. Let f : A→ B be a ring homomorphism and let J be an ideal of
B such that J ⊆ Rad(B). Then Idem(A ./f J) = {(e, f(e)) : e ∈ Idem(A)}.

Proof. Let (e, f(e) + j) be an idempotent element of A ./f J . It is clear that
e must be an idempotent element of A. We only need to show that j = 0.
Indeed, (f(e) + j)2 = f(e) + j. Thus, j − j2 = 2f(e)j and since f(e)2 = f(e),
then j − j2 = 2f(e)2j. Therefore, j − j2 = f(e)(j − j2), hence j = jf(e) (since
J ⊆ Rad(B), so 1− j ∈ U(B)), then 2j = 2jf(e) = j− j2. Consequently, j = 0
since 1 + j ∈ U(B). Accordingly, Idem(A ./f J) ⊆ {(e, f(e)) : e ∈ Idem(A)}.
The converse is clear. �

Proof of Theorem 3.2. (1) The proof of this statement is an immediate conse-
quence of [11, Proposition 2.1(3)]) and the fact that if A is an AVN-ring and I
is an ideal of A, then A/I is an AVN-ring.

(2) If A ./f J is an AVN-ring, then so is A by (1). Conversely, suppose that
A is an AVN-ring, and let (a, f(a) + j) and (b, f(b) + k) be two elements of
A ./f J . Two cases are then possible:

Case 1: a or b /∈ M . Then a or b is invertible in A. Assume without loss
of generality that a is invertible. Then (a, f(a) + j) is a unit in A ./f J by
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[20, Lemma 2.3], so that (A ./f J)(a, f(a)+j)+(A ./f J)(b, f(b)+k) = (A ./f

J)(a, f(a) + j) = (A ./f J)(1, f(1)).
Case 2: a and b ∈ M . Since j, k ∈ J there are positives integers p and

m such that jp = 0 and km = 0. As A is an AVN-ring, there is a positive
integer n such that Aanpm +Abnpm = Ae for some e ∈ Idem(A). By applying
binomial theorem (which is valid in any commutative ring), we get (A ./f

J)(a, f(a) + j)npm + (A ./f J)(b, f(b) + k)npm = (A ./f J)(anpm, f(anpm)) +
(A ./f J)(bnpm, f(bnpm)). Hence (A ./f J)(a, f(a)+j)npm+(A ./f J)(b, f(b)+
k)npm = (A ./f J)(e, f(e)) with (e, f(e)) ∈ Idem(A ./f J) (by Lemma 3.1 since
J ⊆ Rad(B)). Thus, A ./f J is an AVN-ring. �

Next, as an illustrative example for Theorem 3.2, the next example provides
an original of AVN-ring which is not a von Neumann regular ring. Recall that
the maximal ideals of R := AnE are of the form mnE where m is a maximal
ideal of A ([10, Theorem 3.2]).

Example 5. Let (B,M) = (Z/4Z, 2Z/4Z), A := B nB/M be the trivial ring
extension of B by B/M , f : A → B be a surjective ring homomorphism and
J := M be the maximal ideal of B. Then:

(1) A ./f J is an AVN-ring.
(2) A ./f J is not a von Neumann regular ring.

Proof. (1) Clearly, J ⊆ Nil(B), f(M n B/M)J = 0 since M2 = (0). On the
other hand, A is an AVN-ring by Theorem 3.1(2) and since B is a local AVN-
ring. Therefore, by application to Theorem 3.2, it follows that A ./f J is an
AVN-ring.

(2) Since B is not a von Neumann regular ring, then A is not a von Neumann
regular ring by [1, Theorem 3.7]. Thus, A ./f J is not a von Neumann regular
ring by [8, Proposition 2.21(2)]. �

The next theorem gives necessary and sufficient conditions about when an
amalgamation is an AVN-ring in case A and B are integral domains and J is
a nonzero proper ideal of B.

Theorem 3.3. Let A and B be a pair of integral domains, f : A → B be
a ring homomorphism and J be a nonzero proper ideal of B. Then A ./f J
is an AVN-ring if and only if f is injective, f(A) + J is an AVN-ring, and
f(A) ∩ J = (0).

The proof will use the following lemma.

Lemma 3.2. Let A and B be a pair of integral domains, f : A→ B be a ring
homomorphism and J be a proper ideal of B. If A ./f J is an AVN-ring and
f is not injective, then J = 0.

Proof. Deny, let 0 6= j ∈ J . Since f is not injective, there exists 0 6= a ∈ kerf .
Using the fact, A ./f J is an AVN-ring, (A ./f J)(a, j)n + (A ./f J)(0, j)n =
(A ./f J)(e, f(e) + i) for some (e, f(e) + i) ∈ Idem(A ./f J) and since A is an
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integral domain, necessarily e = 1. Hence, there exist (b, f(b)+k), (c, f(c)+ l),
(α, f(α) + s) and (β, f(β) + t) in A ./f J such that:

(an, jn) = (1, 1 + i)(b, f(b) + k),

(0, jn) = (1, 1 + i)(c, f(c) + l),

(1, 1 + i) = (an, jn)(α, f(α) + s) + (0, jn)(β, f(β) + t).

Hence, c = 0 and so f(c) = 0. Therefore, jn = l(1 + i) and 1 + i = jn(f(α) +
f(β) + s + t), we get that 1 = l(f(α) + f(β) + s + t) since B is an integral
domain and j 6= 0, which is absurd since J is a proper ideal of B. It follows
that J 6= 0. �

Proof of Theorem 3.3. Assume that A ./f J is an AVN-ring, then f is injective
by Lemma 3.2 since J 6= 0. We claim that f(A)∩J = (0). Deny, let 0 6= f(a) ∈
J , then (0, f(a)) is an element of A ./f J . Since A ./f J is an AVN-ring, there
exists a positive integer n such that the ideal ((a, f(a))n, (0, f(a))n)(A ./f J)
is generated by an idempotent element. Hence, there exists (e, f(e) + j) ∈
A ./f J (since e ∈ Idem(A) and A is an integral domain, necessarily e = 1),
(A ./f J)(an, f(an))+(A ./f J)(0, f(an)) = (A ./f J)(1, 1+ j). So, there exist
(b, f(b) + k), (c, f(c) + l), (α, f(α) + s) and (β, f(β) + t) in A ./f J such that:

(0, f(an)) = (1, 1 + j)(b, f(b) + k),

(an, f(an)) = (1, 1 + j)(c, f(c) + l),

(1, 1 + j) = (0, f(an))(α, f(α) + s) + (an, f(an))(β, f(β) + t).

Hence, b = 0 and f(b) = 0. From the previous equalities, we deduce that:

f(an) = (1 + j)k and 1 + j = f(an)(f(α) + f(β) + s+ t).

Multiplying the second equality by k, we get that 1 = k(f(α)+f(β)+s+t) since
B is an integral domain. We conclude k is a unit, but k ∈ J hence J = B which
is a contradiction. On the other hand, f(A) + J is an AVN-ring by Theorem
3.2(1). Conversely, assume that f(A) + J is an AVN-ring, f(A) ∩ J = (0) and
f is injective. We claim that the naturel projection:

p : A ./f J → f(A) + J
(a, f(a) + j) 7−→ f(a) + j

is a ring isomorphism. Indeed, it is clear that p is surjective. It remains to
show that p is injective. Let (a, f(a) + j) ∈ ker(p), it is clear that f(a) + j = 0
and so f(a) = −j ∈ f(A)∩J = (0). Consequently, f(a) = −j = 0 and so a = 0
since f is injective. It follows that (a, f(a) + j) = (0, 0). Hence, p is injective.
Thus, p is a ring isomorphism. The conclusion is now straightforward. This
completes the proof. �

It is worth to mention that in case A = B, J = I is a proper ideal of A,
and f is the identity homomorphism on A, the AVN-ring property on A ./f J
forces I to be the zero-ideal as it is shown by the following corollary.
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Corollary 3.1. Let A be an integral domain and I a proper ideal of A. Then
A ./ I is an AVN-ring if and only if so is A and I = (0).

Proof. A ./ I = A ./f I where f is the identity homomorphism of A. If
I is a nonzero ideal of A, by Theorem 3.3, A ./f I is an AVN-ring forces
f(A)∩ I = A∩ I = (0), which is a contradiction. Hence I = (0) as desired. �

The next example illustrates the failure of Theorem 3.3, in general, beyond
the context where A and B are integral domains.

Example 6. Let (B,M) = (Z/9Z, 3Z/9Z), A := B nB/M be the trivial ring
extension of B by B/M , f : A → B be a surjective ring homomorphism and
J := M be the maximal ideal of B. Then:

(1) A and B are not integral domains.
(2) A ./f J is an AVN-ring by Example 5.
(3) f(A) ∩ J 6= 0.
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