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BASIC FORMULAS FOR THE DOUBLE INTEGRAL

TRANSFORM OF FUNCTIONALS ON

ABSTRACT WIENER SPACE

Hyun Soo Chung

Abstract. In this paper, we establish several basic formulas among the
double-integral transforms, the double-convolution products, and the in-

verse double-integral transforms of cylinder functionals on abstract

Wiener space. We then discuss possible relationships involving the double-
integral transform.

1. Introduction

Let H be a real separable infinite-dimensional Hilbert space with inner prod-
uct 〈·, ·〉 and norm | · | =

√
〈·, ·〉. Let ‖ · ‖0 be a measurable norm on H with

respect to the Gaussian cylinder set measure ν0 on H. Let B denote the com-
pletion of H with respect to ‖ · ‖0. Let i denote the natural injection from H
to B. The adjoint operator i∗ of i is one to one and maps B∗ continuously
onto a dense subset H∗, where B∗ and H∗ are topological duals of B and H,
respectively. By identifying H∗ with H and B∗ with i∗B∗, we have a triple
B∗ ⊂ H∗ ≈ H ⊂ B with 〈x, y〉 = (x, y) for all x in H and y in B∗, where (·, ·)
denotes the natural dual pairing between B and B∗. By a well known result
of Gross [11], ν0 ◦ i−1 has a unique countably additive extension ν to the Borel
σ-algebra B(B) of B. The triple (B,H, ν) is called an abstract Wiener space.
For more details, see [5, 11–13,17–19].

Let {αj}∞j=1 be a complete orthonormal set in H with αj ’s are in B∗. For
each h ∈ H and for x ∈ B, we define a stochastic inner product (h, x)∼ by

(h, x)∼ =

{
lim
n→∞

∑n
j=1〈h, αj〉(x, αj), if the limit exists,

0, otherwise.

Then for every h( 6= 0) in H, (h, x)∼ exists for all x ∈ B, (h, ·)∼ is a Gaussian
random variable on B with mean zero and variance |h|2 and is essentially
independent of the choice of the complete orthonormal set used in its definition.

Received August 27, 2021; Revised December 28, 2021; Accepted January 17, 2022.
2020 Mathematics Subject Classification. Primary 60J65, 28C20, 44A15, 46C07.
Key words and phrases. Double integral transform, double convolution product, inverse

double integral transform, abstract Wiener space.

c©2022 Korean Mathematical Society

1131



1132 H. S. CHUNG

Also, if both h and x are in H, then Parseval’s identity gives (h, x)∼ = 〈h, x〉.
Furthermore, (h, λx)∼ = (λh, x)∼ = λ(h, x)∼ for all λ ∈ R, h ∈ H and for all
x ∈ B. We also see that if {h1, . . . , hn} is an orthonormal set in H, then the
random variables (hj , x)∼’s are independent, see [6].

In [18], Lee defined an integral transform

Fγ,β(F )(y) =

∫
B

F (γx+ βy)dν(x)

of analytic functionals on abstract Wiener space. For an appropriate functional
u(x) on B, let Nc be an operator defined by the formula

Ncu(x) = −TrHD2u(x) + c(x,Du(x))∼, x ∈ B, c ∈ C/{0},

where D2 denotes the second Fréchet derivative and TrH denotes the trace of
an operator. He showed that the integral transform F1/c,i, c ∈ C/{0} forms
the solution of a differential equation which is called a Cauchy problem

(1.1)

{
ut(x, t) = P(Nc)u(x, t), x ∈ B, t > 0

u(x, 0) = F (x),

where P(η) = amη
m + · · ·+ a1η+ a0 is an m-dimensional polynomial function

with respect to η. In addition, let P(η) = −η and c = 1 in equation (1.1)
above. Then the solution of the Cauchy problem is given by formula

u(x, t) =

∫
B

F (e−tx+
√

1− e−2ty)dν(y);

or equivalently,

u(x, t) =

∫
B

F (y)ot(x, dy),

where ot(x, dy) = ν1−e−2t(e−tx, dy) and νt is the Wiener measure which is
generated by the Gauss Cylinder set measure µt with variance t. This showed
that the family of measures {ot(x, dy)} serves as the “fundamental solution” of
the operator ∂/∂t+N1, for more details see [12,18].

One can see that many transforms: the Fourier-Wiener transform [1], the
modified Fourier-Wiener transform [2], the Fourier-Feynman transform [14]
and the Gauss transform: are special cases of Lee’s integral transform Fγ,β .
Since then the integral transform Fγ,β was introduced by Lee, many mathe-
maticians have studied integral transforms in conjunction with related topics
involving functionals in various classes. In particular, the authors obtained
basic formulas for integral transforms and convolution products of functionals
in several classes, [4, 5, 7–9, 15, 16]. In [10], the authors introduced a double
integral transform, a double convolution product and a Banach algebra, and
established various basic formulas.
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In this paper, we prove the existence of the double-integral transform, the
double-convolution product, and the inverse double-integral transform of cylin-
der functionals on abstract Wiener space. We then obtain various basic for-
mulas involving them, and provide additional relations involving the double-
integral transforms.

2. Definitions and preliminaries

We begin this section by stating some definitions and previous results.
Let [B] denote the complexification of B. We note that for h ∈ H and

x ∈ [B],

(h, x)∼ = (h, x1)∼ + i(h, x2)∼, x = x1 + ix2 ∈ [B].

For any orthonormal set {α1, . . . , αn} in H and x ∈ [B], let

(~α, x)∼ = ((α1, x)∼, . . . , (αn, x)∼)

and let ~λk = (λk,1, . . . , λk,n) ∈ Cn, k = 1, 2, . . .. Also, for ~γ = (γ1, γ2) ∈
C2/{(0, 0)} and ~x = (x1, x2) ∈ [B]2, let

~γ ◦ ~x = (γ1x1, γ2x2).

We note that for ~γ = (γ1, γ2) ∈ C2/{(0, 0)} and ~x = (x1, x2) ∈ B2, ~γ ◦ ~x is
well-defined because B ⊂ [B].

We now recall the definitions of double integral transform (DIT) and the
double convolution product (DCP) of functionals on [B]2, see [10].

Definition 1. Let F and G be functionals on [B]2. Then a DIT F~γ,~β(F ) of F

is defined by the formula (if it exists)

(2.1) F~γ,~β(F )(~y) =

∫
B2

F (~γ ◦ ~x+ ~β ◦ ~y)d~ν(~x), ~y ∈ [B]2

and a DCP (F ∗G)~γ of F and G is defined by the formula (if it exists)

(2.2) (F ∗G)~γ(~y) =

∫
B2

F

(
~y + ~γ ◦ ~x√

2

)
G

(
~y − ~γ ◦ ~x√

2

)
d~ν(~x), ~y ∈ [B]2.

We next state an integration formula which we use several times in this
paper. Let {α1, . . . , αn} be any orthonormal set in H and f : Cn → C be Borel
measurable. Then for each complex number γ,

(2.3)

∫
B

f(γ(α1, x)∼, . . . , γ(αn, x)∼)dν(x)

.
=

(
1

2π

)n ∫
Rn

f(γ~u) exp

{
−

n∑
j=1

u2
j

2

}
d~u,

where
.
= means that if either side of (2.3) exists, both sides exist and equality

holds.
We finish this section by describing the class of functionals that we work

with in this paper. This class is a more generalized class used in [5, 15]. Let
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{α1, . . . , αn} be any orthonormal set in H and let A2
0 ≡ A0 ×A0 be the space

of all functionals F : [B]2 → C of the form

(2.4) F (x1, x2) = f((~α, x1)∼, (~α, x2)∼)

for some positive integer n, f( ~λ1, ~λ2) is an entire function of exponential type;
that is to say,

|f( ~λ1, ~λ2)| ≤ Lf exp

{
Mf

n∑
j=1

(|λ1,j |+ |λ2,j |)
}

for some positive constants Lf and Mf . We note that the restriction functional
F |[B] of F is an element of the class used in [5, 15].

Remark 2.1. (1) Note that A2
0 is a very rich class of functionals because A2

0

contains many unbounded functionals. In fact, if F is given by (2.4), then the
function f is bounded if and only if it is a constant function.

(2) When F and G in A2
0, we can always express F by (2.4) and G by

(2.5) G(x1, x2) = g((~α, x1)∼, (~α, x2)∼)

using the same positive integer n, where g is an entire function of exponential
type.

3. Existence theorems

In this section we obtain the existence of the DIT, DCP and inverse DIT
(IDIT). In Theorem 3.1 below, we obtain a formula for the DIT of functionals
from A2

0 to A2
0.

Theorem 3.1. Let F ∈ A2
0 be given by equation (2.4). Then for each ~γ =

(γ1, γ2) and ~β = (β1, β2), the DIT F~γ,~β(F ) of F exists, belongs to A2
0 and is

given by the formula

(3.1) F~γ,~β(F )(~y) = Γ1((~α, y1)∼, (~α, y2)∼)

for ~y ∈ [B]2, where

(3.2)

Γ1(~v1, ~v2) =

(
1

2π

)n ∫
Rn

∫
Rn

f(γ1 ~u1 + β1 ~v1, γ2 ~u2 + β2 ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2.

Proof. First, let ~vi = (~α, yi) for i = 1, 2. Using equations (2.1) and (2.3) it
follows that for ~y ∈ [B]2,

F~γ,~β(F )(~y) =

∫
B2

F (~γ ◦ ~x+ ~β ◦ ~y)d~ν(~x)

=

∫
B2

f(γ1(~α, x1)∼ + β1(~α, y1)∼, γ2(~α, x2)∼ + β2(~α, y2)∼)d~ν(~x)
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=

(
1

2π

)n ∫
Rn

∫
Rn

f(γ1 ~u1 + β1 ~v1, γ2 ~u2 + β2 ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2

= Γ1(~v1, ~v2),

where Γ1 is given by equation (3.2). Using the similar method used in [15] and
by Morera’s theorem,∫

Λ

Γ1(~v1, ~v2)d~v1d~v2

=

(
1

2π

)n ∫
Rn

∫
Rn

∫
Λ

f(γ1 ~u1 + β1 ~v1, γ2 ~u2 + β2 ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d~v1d~v2d ~u1d ~u2

= 0

and so the function Γ1(~v1, ~v2) is an entire function on C2n for any simple closed
contour Λ in C2n because f is an entire function. Also, we have

|Γ1(~v1, ~v2)|

≤ Lf

(
1

2π

)n ∫
Rn

∫
Rn

exp

{
Mf

n∑
j=1

(|γ1u1,j + β1v1,j |+ |γ2u2,j + β2v2,j |)
}

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2

≤ Lf

(
1

2π

)n ∫
Rn

∫
Rn

exp

{ n∑
j=1

(
Mf |γ1u1,j |−

u2
1,j

2

)
+

n∑
j=1

(
Mf |γ2u2,j |−

u2
2,j

2

)}

× exp

{
Mf

n∑
j=1

(|β1v1,j |+ |β2v2,j |)
}
d ~u1d ~u2

≤ LΓ1 exp

{
MΓ1

n∑
j=1

(|v1,j |+ |v2,j |)
}
,

where

LΓ1
= Lf

(
1

2π

)n ∫
Rn

∫
Rn

exp

{ n∑
j=1

(
Mf |γ1||u1,j | −

u2
1,j

2

)

+

n∑
j=1

(
Mf |γ2||u2,j | −

u2
2,j

2

)}
d ~u1d ~u2 <∞,

MΓ1
= Mfβ

0 and β0 = max{|β1|, |β2|}. Hence F~γ,~β(F ) is an element ofA2
0. �
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In the next theorem, we obtain a formula for the DCP of functionals from
A2

0 to A2
0.

Theorem 3.2. Let F and f be as in Theorem 3.1. Let G ∈ A2
0 and g be given

by equation (2.5). Then for each ~γ = (γ1, γ2), the DCP (F ∗ G)~γ of F and G
exists, belongs to A2

0 and is given by the formula

(3.3) (F ∗G)~γ(~y) = Γ2((~α, y1)∼, (~α, y2)∼)

for ~y ∈ [B]2, where

Γ2(~v1, ~v2)(3.4)

=

(
1

2π

)n ∫
Rn

∫
Rn

f

(
1√
2

(~v1 + γ1 ~u1),
1√
2

(~v2 + γ2 ~u2)

)
× g
(

1√
2

(~v1 − γ1 ~u1),
1√
2

(~v2 − γ2 ~u2)

)
exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2.

Proof. Let ~vi = (~α, yi) for i = 1, 2. Using equations (2.2) and (2.3) it follows
that for ~y ∈ [B]2,

(F ∗G)~γ(~y)

=

∫
B2

f

(
1√
2

(~v1 + γ1(~α, x1)∼),
1√
2

(~v2 + γ2(~α, x2)∼)

)
× g
(

1√
2

(~v1 − γ1(~α, x1)∼),
1√
2

(~v2 − γ2(~α, x2)∼)

)
d~ν(~x)

=

(
1

2π

)n ∫
Rn

∫
Rn

f

(
1√
2

(~v1 + γ1 ~u1),
1√
2

(~v2 + γ2 ~u2)

)
× g
(

1√
2

(~v1 − γ1 ~u1),
1√
2

(~v2 − γ2 ~u2)

)
exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2

= Γ2(~v1, ~v2),

where Γ2 is given by equation (3.4). Furthermore, by using the same method
in the proof of Theorem 3.1, the function Γ2(~v1, ~v2) is an entire function on
C2n. Also, we have

|Γ2(~v1, ~v2)|

≤ LfLg

(
1

2π

)n ∫
Rn

∫
Rn

exp

{
Mf +Mg√

2

n∑
j=1

(|γ1u1,j + v1,j |+ |γ2u2,j + v2,j |)
}

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2

≤ LfLg

(
1

2π

)n ∫
Rn

∫
Rn

exp

{ n∑
j=1

(
Mf +Mg√

2
|γ1u1,j | −

u2
1,j

2

)}
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× exp

{ n∑
j=1

(
Mf +Mg√

2
|γ2u2,j | −

u2
2,j

2

)}

× exp

{
Mf +Mg√

2

n∑
j=1

(
|v1,j |+ |v2,j |

)}
d ~u1d ~u2

≤ LΓ2
exp

{
MΓ2

n∑
j=1

(|v1,j |+ |v2,j |)
}
,

where

LΓ2
= LfLg

(
1

2π

)n ∫
Rn

∫
Rn

exp

{ n∑
j=1

(
Mf +Mg√

2
|γ1||u1,j | −

u2
1,j

2

)}

× exp

{ n∑
j=1

(
Mf +Mg√

2
|γ2||u2,j | −

u2
2,j

2

)}
d ~u1d ~u2 <∞,

and MΓ2 =
Mf+Mg√

2
. Hence (F ∗G)~γ is an element of A2

0. �

To establish the existence of the IDIT, we need the following lemma.

Lemma 3.3. Let γ1 and γ2 be nonzero complex numbers. Let f be as in
Theorem 3.1. Then for each (~v1, ~v2) ∈ Cn × Cn,

(3.5)

(
1

2π

)2n ∫
R4n

f(γ1 ~u1 + iγ1 ~w1 + ~v1, γ2 ~u2 + iγ2 ~w2 + ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j + w2
1,j + w2

2,j

2

}
d ~u1d ~u2d ~w1d ~w2 = f(~v1, ~v2).

Proof. First converting to polar coordinates with ui,j = ri,j cos θi,j and wi,j =
ri,j sin θi,j for i = 1, 2, j = 1, . . . , n yields the expression

(3.6)

(
1

2π

)2n ∫ ∞
0

(2n)

∫ ∞
0

exp

{
−

n∑
j=1

r2
1,j + r2

2,j

2

}

×
∫ 2π

0

(2n)

∫ 2π

0

f(γ1r1,1e
iθ1,1 + v1,1, . . . , γ1r1,ne

iθ1,n + v1,n,

γ2r2,1e
iθ2,1 + v2,1, . . . , γ2r2,ne

iθ2,n + v2,n)d~θ1d~θ2 ~r1 ~r2d~r1d~r2

= f(~v1, ~v2),

where ~r1 ~r2 = r1,1 · · · r1,nr2,1 · · · r2,n. Using Gauss’s mean value theorem from

complex variables to evaluate the integral (3.6) with respect to ~θ1, ~θ2 and
thereby carrying out the integration with respect to ~r1 and ~r2, the desired
formula (3.5) now follows. �

In the next theorem, we establish the existence of the inverse DIT.
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Theorem 3.4. Let F be as in Theorem 3.1. Then

(3.7) F ~γ0, ~β0
(F~γ,~β(F ))(~y) = F (~y) = F~γ,~β(F ~γ0, ~β0

(F ))(~y)

for ~y ∈ [B]2, where ~γ0 = (i γ1β1
, i γ2β2

) and ~β0 = ( 1
β1
, 1
β2

).

Proof. From Theorem 3.1, all expressions in equation (3.7) exist as elements
of A2

0. Let vi,j = (αj , yi)
∼, i = 1, 2 and j = 1, 2, . . . , n. We shall show that

equalities hold in equation (3.7). Using equations (2.1), (3.1) and (2.3), it
follows that for ~y ∈ [B]2,

F ~γ0, ~β0
(F~γ,~β(F ))(~y)

=

∫
B2

F~γ,~β(F )( ~γ0 ◦ ~x+ ~β0 ◦ ~y)d~ν(~x)

=

(
1

2π

)n ∫
B2

∫
R2n

f(γ1 ~u1 + iγ1(~α, x1)∼ + ~v1, γ2 ~u2 + iγ2(~α, x2)∼ + ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2d~ν(~x)

=

(
1

2π

)2n ∫
R4n

f(γ1 ~u1 + iγ1 ~w1 + ~v1, γ2 ~u2 + iγ2 ~w2 + ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j + w2
1,j + w2

2,j

2

}
d ~u1d ~u2d ~w1d ~w2.

From Lemma 3.3, the first equation of (3.7) equals F (y1, y2). Also, proceeding
as above, we find that the third equation of (3.7) equals F (y1, y2), and this
concludes the proof of Theorem 3.4. �

4. Basic formulas

In this section we establish various basic formulas for the DIT, the DCP and
the IDIT of functionals in A2

0. In our first theorem of this section, we show
that the DIT of the DCP is the product of their DITs.

Theorem 4.1. Let F and G be as in Theorem 3.2. Then for each ~γ = (γ1, γ2)

and ~β = (β1, β2),

(4.1) F~γ,~β(F ∗G)~γ(~y) = F~γ,~β(F )(~y/
√

2)F~γ,~β(G)(~y/
√

2)

as elements of A2
0.

Proof. First, from Theorems 3.1 and 3.2, all expressions in equation (4.1) exist
as elements of A2

0. Now, using equations of Definition 1, (2.2), (3.3), (3.2) and
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(2.3) it follows that for ~y ∈ [B]2,

F~γ,~β(F ∗G)~γ(~y)

=

(
1

2π

)2n∫
R4n

f
(
γ1√

2
~v1 +

γ1√
2
~u1 +

β1√
2

(~α, y1)∼,
γ2√

2
~v2 +

γ2√
2
~u2 +

β2√
2

(~α, y2)∼
)

× g
(
γ1√

2
~v1 −

γ1√
2
~u1 +

β1√
2

(~α, y1)∼,
γ2√

2
~v2 −

γ2√
2
~u2 +

β2√
2

(~α, y2)∼
)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j + v2
1,j + v2

2,j

2

}
d ~u1d ~u2d~v1d~v2.

Next, letting wi,j =
vi,j+ui,j√

2
and zi,j =

vi,j−ui,j√
2

for i = 1, 2 and j = 1, . . . , n,

we obtain

F~γ,~β(F ∗G)~γ(~y)

=

(
1

2π

)2n∫
R4n

f

(
γ1 ~w1 +

β1√
2

(~α, y1)∼, γ2 ~w2 +
β2√

2
(~α, y2)∼

)
× g
(
γ1 ~z1 +

β1√
2

(~α, y1)∼, γ2 ~z2 +
β2√

2
(~α, y2)∼

)
× exp

{
−

n∑
j=1

w2
1,j + w2

2,j + z2
1,j + z2

2,j

2

}
d ~w1d ~w2d~z1d~z2

=

(
1

2π

)n∫
R2n

f

(
γ1 ~w1 +

β1√
2

(~α, y1)∼, γ2 ~w2 +
β2√

2
(~α, y2)∼

)
× exp

{
−

n∑
j=1

w2
1,j + w2

2,j

2

}
d ~w1d ~w2

×
(

1

2π

)n∫
R2n

g

(
γ1 ~z1 +

β1√
2

(~α, y1)∼, γ2 ~z2 +
β2√

2
(~α, y2)∼

)
× exp

{
−

n∑
j=1

z2
1,j + z2

2,j

2

}
d~z1d~z2

=

∫
B2

F (~γ ◦ ~x+
1√
2
~β ◦ ~y)d~ν(~x)

∫
B2

G(~γ ◦ ~x+
1√
2
~β ◦ ~y)d~ν(~x)

= 0 F~γ,~β(F )(~y/
√

2)F~γ,~β(G)(~y/
√

2),

which completes the proof of Theorem 4.1. �

Next, we obtain two basic formulas for the DCPs, whose proofs follow im-
mediately from equations (4.1) and (3.7).

Theorem 4.2. Let F and G be as in Theorem 4.1. Then

(4.2) (F ∗G)~γ(~y) = F ~γ0, ~β0
(F~γ,~β(F )(~·/

√
2)F~γ,~β(G)(~·/

√
2))(~y)
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as elements of A2
0, where ~γ0 and ~β0 are as in Theorem 3.4. Also, by inter-

changing the two pairs (~γ, ~β) and ( ~γ0, ~β0) in equation (4.2), we establish the
basic formula

(F ∗G) ~γ0(~y) = F~γ,~β(F ~γ0, ~β0
(F )(~·/

√
2)F ~γ0, ~β0

(G)(~·/
√

2))(~y)

as elements of A2
0.

In order to establish the Fubini theorem, we need the following lemma. The
proof of lemma was established in [5] and used in [4, 9].

Lemma 4.3. Let φ be an integrable functional on [B]. Then for all non-zero
complex numbers γ and β,

(4.3)

∫
B2

φ(γx+ βy + z)dν(x)dν(y) =

∫
B

φ(
√
γ2 + β2w + z)dν(w),

where z ∈ [B].

In our next theorem, we establish the Fubini theorem with respect to the
DIT.

Theorem 4.4. Let F be as in Theorem 4.1. Let ~γ = (γ1, γ2), ~β = (β1, β2),

~η = (η1, η2) and ~δ = (δ1, δ2) with γ2
i + β2

i = 1 and η2
i + δ2

i = 1 for i = 1, 2.
Then

(4.4) F~γ,~β(F~η,~δ(F ))(~y) = F~γ′, ~β′(F )(~y) = F~η,~δ(F~γ,~β(F ))(~y)

as elements of A2
0 with γ′i =

√
γ2
i + β2

i η
2
i and β′i = βiδi for i = 1, 2.

Proof. Using equations (2.1) and (2.3) it follows that for ~y ∈ [B]2,

F~γ,~β(F~η,~δF )(~y)

=

∫
B2

∫
B2

f(η1(~α, z1)∼ + δ1γ1(~α, x1)∼ + δ1β1(~α, y1)∼,

η2(~α, z2)∼ + δ2γ2(~α, x2)∼ + δ2β2(~α, y2)∼)d~ν(~z)d~ν(~x).

Now applying formula (4.3) to the first and second components, respectively,
we obtain

F~γ,~β(F~η,~δF )(~y)

=

∫
B2

f(
√
η2

1 + δ2
1γ

2
1(~α,w1)∼ + δ1β1(~α, y1)∼,√

η2
2 + δ2

2γ
2
2(~α,w2)∼ + δ2β2(~α, y2)∼)d~ν(~w).

On the other hand, again using equations (2.1) and (2.3), it follows that for
~y ∈ [B]2,

F~η,~δ(F~γ,~βF )(~y)

=

∫
B2

∫
B2

f(γ1(~α, z1)∼ + β1η1(~α, x1)∼ + δ1β1(~α, y1)∼,

γ2(~α, z2)∼ + β2η2(~α, x2)∼ + δ2β2(~α, y2)∼)d~ν(~z)d~ν(~x).
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Next again applying formula (4.3) to the first and second components, respec-
tively, it follows that for ~y ∈ [B]2,

F~η,~δ(F~γ,~βF )(~y)

=

∫
B2

f(
√
γ2

1 + β2
1η

2
1(~α,w1)∼ + δ1β1(~α, y1)∼,√

γ2
2 + β2

2η
2
2(~α,w2)∼ + δ2β2(~α, y2)∼)d~ν(~w).

Note that γ2
i + β2

i η
2
i = η2

i + γ2
i δ

2
i because γ2

i + β2
i = 1 and η2

i + δ2
i = 1 for

i = 1, 2 and so equation (4.4) is established. �

We obtain the following corollary by letting γ1 = γ2 = η1 = η2 = γ and
β1 = β2 = δ1 = δ2 = β, in equation (4.4).

Corollary 4.5. Let F be as in Theorem 4.4. Let ~γ = (γ, γ) and ~β = (β, β)
with γ2 + β2 = 1 in Theorem 4.4. Then

F~γ,~β(F~γ,~βF )(~y) = F ~γ′′, ~β′′F (~y)

as elements of A2
0, where ~γ′′=(γ′′1 , γ

′′
2 ) and ~β′′=(β′′1 , β

′′
2 ) with γ′′i =

√
γ2 + β2γ2

and β′′i = β2, i = 1, 2.

5. Additional relationships

In this section, we give some additional results and applications with respect
to the results in Sections 3 and 4.

(1) Let f( ~λ1, ~λ2) = f∗( ~λ1 + ~λ2), where F ∗(x) = f∗((~α, x)∼) ∈ E0, where E0

is the class of functionals introduced in [15]. Then for γ∗ =
√
γ2

1 + γ2
2 6= 0 and

β∗ = β1β2,

F~γ,~β(F )(~y) =

∫
B2

f(γ1(~α, x1)∼ + β1(~α, y1)∼, γ2(~α, x2)∼ + β2(~α, y2)∼)d~ν(~x)

=

∫
B2

f∗(γ1(~α, x1)∼ + γ2(~α, x2)∼ + β1(~α, y1)∼ + β2(~α, y2)∼)d~ν(~x)

=

∫
B

f∗(
√
γ2

1 + γ2
2(~α, x)∼ + β1(~α, y1)∼ + β2(~α, y2)∼)dν(x)

= Gγ∗,β∗(F ∗)(y1/β2 + y2/β1),

where Gγ,β is the ordinary integral transform used in [5, 18].
Let f(u, v) be analytic and bounded on all compact subsets of the region by

intersection the product of two circles

R = {(u, v) : |u| < R1 ≤ ∞, |v| < R2 ≤ ∞}

with the union of two hyper-planes P = {(u, v) | Im(u)Im(v) = 0}. In [3],
Cameron and Storvick showed that the function f(u, v) on R can be expressed
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by the form

(5.1) f(u, v) ≈
∞∑

m,n=0

a(m,n)Pm(u)Pn(v), u, v ∈ R

in the sense of convergence absolutely where Pn is the Legendre polynomial.
Since the Legendre polynomial has an analytic extension, equation (5.1) still
holds for the complex numbers u and v. These facts indicate that the following
formula has some meaning.

(2) Let f( ~λ1, ~λ2) = f1( ~λ1)f2( ~λ2), where Fi(x) = fi((~α, x)∼) ∈ E0 for i =
1, 2. Then

F~γ,~β(F )(~y) =

∫
B2

f(γ1(~α, x1)∼ + β1(~α, y1)∼, γ2(~α, x2)∼ + β2(~α, y2)∼)d~ν(~x)

=

(∫
B

f1(γ1(~α, x1)∼ + β1(~α, y1)∼)dν(x1)

)
×
(∫

B

f2(γ2(~α, x2)∼ + β2(~α, y2)∼)dν(x2)

)
= Gγ1,β1

(F1)(y1)Gγ2,β2
(F2)(y2),

where Gγ,β is the ordinary integral transform used in [5, 18]. Furthermore,

using the mathematical induction, let f( ~λ1, . . . , ~λn) = f1( ~λ1) · · · fn( ~λn), where
Fi(x) = fi((~α, x)∼) ∈ E0 for i = 1, . . . , n. Then for ~γ = (γ1, . . . , γn) and
~β = (β1, . . . , βn),

F~γ,~β(F )(~y) =

n∏
i=1

Gγi,βi
(Fi)(yi).

In particular, let f( ~λ1, ~λ2) = f1( ~λ1) (or f( ~λ1, ~λ2) = f2( ~λ2)). Then

F~γ,~β(F )(~y) = Gγ1,β1(F1)(y1) or F~γ,~β(F )(~y) = Gγ2,β2(F2)(y2).

(3) Let F ∈ A2
0 be given by equation (2.4) and let {(γm,j , βm,j)} be a

sequence in C×C with γm,j → γj 6= 0 and βm,j → βj 6= 0 as m→∞ for some
(γj , βj) ∈ C×C, j = 1, 2. Then using the dominated convergence theorem, we
have

lim
m→∞

F~γm,~βm
F (~y)

= lim
m→∞

(
1

2π

)n ∫
Rn

∫
Rn

f(γm,1 ~u1 + βm,1 ~v1, γm,2 ~u2 + βm,2 ~v2)

× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2

=

(
1

2π

)n ∫
Rn

∫
Rn

f(γ1 ~u1 + β1 ~v1, γ2 ~u2 + β2 ~v2)
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× exp

{
−

n∑
j=1

u2
1,j + u2

2,j

2

}
d ~u1d ~u2

= F~γ,~βF (~y).
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