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UNIQUE RANGE SETS WITHOUT FUJIMOTO’S

HYPOTHESIS

Bikash Chakraborty

Abstract. This paper studies the uniqueness of two non-constant mero-

morphic functions when they share a finite set. Moreover, we will give an
existence of unique range sets for meromorphic functions that are the zero

sets of some polynomials that do not necessarily satisfy the Fujimoto’s
hypothesis ([6]).

1. Introduction

We use M(C) to denote the set of all meromorphic functions in C. Let
S ⊂ C∪{∞} be a non-empty set with distinct elements. Further suppose that
f, g be two non-constant meromorphic (resp. entire) functions. We set

Ef (S) =
⋃
a∈S
{z : f(z)− a = 0},

where a zero of f −a with multiplicity m counts m times in Ef (S). If Ef (S) =
Eg(S), then we say that f and g share the set S CM.

If Ef (S) = Eg(S) implies f ≡ g, then the set S is called a unique range set
for meromorphic (resp. entire) functions, in short, URSM (resp. URSE).

The first example of a unique range set was given by F. Gross and C. C.
Yang ([7]). They proved that if two non-constant entire functions f and g share
the set S = {z ∈ C : ez + z = 0} CM, then f ≡ g. Since then, many efforts
have been made to construct new unique range sets with cardinalities as small
as possible (see Chapter 10 of [9]).

So far, the smallest URSM has 11 elements which was constructed by G.
Frank and M. Reinders ([5]). That URSM is the zero set of the following
polynomial.

P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c,
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where n ≥ 11 and c(6= 0, 1) is any complex number.
To characterize the unique range sets, in 2000, H. Fujimoto ([6]) made a

major breakthrough by observing that almost all unique range sets are the
zero sets of some polynomials which satisfy an injectivity condition (which is
known as Fujimoto’s hypothesis). To state his result, we recall some well-known
definitions.

Let P (z) be a non-constant monic polynomial in C[z]. The polynomial P (z)
is called a uniqueness polynomial for meromorphic (resp. entire) functions, in
short, UPM (resp. UPE) if the condition P (f) ≡ P (g) implies f ≡ g where f
and g are any two non-constant meromorphic (resp. entire) functions.

Also, the polynomial P (z) is called a strong uniqueness polynomial for mero-
morphic (resp. entire) functions, in short, SUPM (resp. SUPE) if the condition
P (f) ≡ cP (g) implies f ≡ g where f and g are any two non-constant mero-
morphic (resp. entire) functions and c is any non-zero complex number.

Thus strong uniqueness polynomials are uniqueness polynomials but the
converse is not true, in general. For example, we consider the polynomial
P (z) = az + b (a 6= 0). Then for any non-constant meromorphic function
(resp. entire) g if we take f := cg − b

a (1 − c) (c 6= 0, 1), then we see that
P (f) = cP (g) but f 6= g.

Let P (z) be a polynomial such that its derivative P ′(z) has k distinct ze-
ros d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk, respectively. The polynomial
P (z) is said to satisfy “condition H” ([6]) (which is known as Fujimoto’s hy-
pothesis) if

(1.1) P (dls) 6= P (dlt) (1 ≤ ls < lt ≤ k).

Now, we state Fujimoto’s ([6]) result.

Theorem 1.1 ([6]). Let P (z) be a strong uniqueness polynomial of the form
P (z) = (z − a1)(z − a2) · · · (z − an) (ai 6= aj) satisfying the condition (1.1).
Moreover, either k ≥ 3 or k = 2 and min{q1, q2} ≥ 2. If S = {a1, a2, . . . , an},
then S is a URSM (resp. URSE) whenever n ≥ 2k + 7 (resp. n ≥ 2k + 3).

But, in 2011, T. T. H. An ([1]) constructed a URSM that is the zero set of a
polynomial which is not necessarily satisfying the Fujimoto’s hypothesis (1.1).

Theorem 1.2 ([1]). Let P (z) = anz
n +amz

m +am−1z
m−1 + · · ·+a0 (1 ≤ m <

n, ai ∈ C, and am 6= 0) be a polynomial of degree n with only simple zeros, and
let S be its zero set. Further suppose that k is the number of distinct zeros of the
derivative P ′(z) and I = {i : ai 6= 0}, λ = min{i : i ∈ I}, J = {i − λ : i ∈ I}.
If n ≥ max{2k + 7,m+ 4}, then the following statements are equivalent:

i) S is a URSM.
ii) P is a SUPM.
iii) S is affine rigid.
iv) The greatest common divisors of the indices respectively in I and J are

both 1.
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Later, in 2012, using the concept of weighted sharing ([8]), A. Banerjee and I.
Lahiri constructed a unique range set that is the zero set of a polynomial which
is not necessarily satisfying the Fujimoto’s hypothesis. To state the result of
Banerjee and Lahiri, we need to recall the definition of weighted set sharing.

Let f and g be two non-constant meromorphic functions and l be any non-
negative integer or infinity. For a ∈ C ∪ {∞}, we denote by El(a; f), the set
of all a-points of f , where an a-point of multiplicity m is counted m times if
m ≤ l and l + 1 times if m > l. If El(a; f) = El(a; g), then we say that f and
g share the value a with weight l.

For S ⊂ C ∪ {∞}, we define Ef (S, l) = ∪a∈SEl(a; f). If Ef (S, l) = Eg(S, l),
then we say that f and g share the set S with weight l, or simply f and g share
(S, l).

If Ef (S, l) = Eg(S, l) implies f ≡ g, then the set S is called a unique range
set for meromorphic (resp. entire) functions with weight l, in short, URSMl

(resp. URSEl).

Theorem 1.3 ([2]). Let P (z) = anz
n +

∑m
j=2 ajz

j + a0 be a polynomial of
degree n, where n − m ≥ 3 and apam 6= 0 for some positive integer p with
2 ≤ p ≤ m and gcd(p, 3) = 1. Suppose further that S = {α1, α2, . . . , αn} be the
set of all distinct zeros of P (z). Let k be the number of distinct zeros of the
derivative P ′(z). If n ≥ 2k + 7 (resp. 2k + 3), then the following statements
are equivalent:

i) P is a SUPM (resp. SUPE).
ii) S is a URSM2 (resp. URSE2).

iii) S is a URSM (resp. URSE).
iv) P is a UPM (resp. UPE).

We have seen from Theorem 1.2 and Theorem 1.3 that the polynomial which
generates a unique range set is a specific polynomial, i.e., the polynomial has a
gap after n-th degree term (where n is the degree of the respective polynomial).
The motivation of this short note is to construct a family of new unique range
sets such that the corresponding unique range set generating polynomials is
not necessarily satisfying the Fujimoto’s hypothesis as well as the generating
polynomials have no “such” gap.

2. Main results

Let

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0(2.1)

be a monic polynomial of degree n in C[z] without multiple zeros. Let P (z)−
P (0) have m1 simple zeros and m2 multiple zeros. Further suppose that P ′(z)
has k distinct zeros.

Theorem 2.1. Let P (z) be a monic polynomial defined by (2.1) with P (0) 6= 0.
Suppose further that S = {α1, α2, . . . , αn} is the set of all distinct zeros of P (z).
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If k ≥ 2, m1 + m2 ≥ 5 (resp. m1 + m2 ≥ 3) and n ≥ max{2k + 7,m1 + m2 +
3} (resp. n ≥ max{2k + 3,m1 + m2 + 1}), then the following statements are
equivalent:

i) P is a SUPM (resp. SUPE).
ii) S is a URSM2 (resp. URSE2).

iii) S is a URSM (resp. URSE).

Theorem 2.2. Let P (z) = zn+an−1z
n−1+· · ·+a1z+a0 be a monic polynomial

of degree n in C[z] with P (0) 6= 0. If P (z)−P (0) has m1 simple zeros and m2

multiple zeros, and n ≥ 2(m1 +m2) + 2 (resp. n ≥ 2(m1 +m2) + 1), then the
following two statements are equivalent:

i) P is a SUPM (resp. SUPE).
ii) P is a UPM (resp. UPE).

Proof of Theorem 2.1. Since, the two cases (ii)⇒(iii) and (iii)⇒(i) are straight-
forward, so we only prove that (i)⇒(ii).

Assume that P (z) is a SUPM (resp. SUPE) and Ef (S, 2) = Eg(S, 2). Now,
we put

F (z) :=
1

P (f(z))
and G(z) :=

1

P (g(z))
.

Let S(r) : (0,∞) → R be any function satisfying S(r) = o(T (r, F ) + T (r,G))
for r →∞ outside a set of finite Lebesgue measure. Next we let

H(z) :=
F ′′(z)

F ′(z)
− G′′(z)

G′(z)
.

First we assume that H 6≡ 0. The lemma of logarithmic derivative gives

m(r,H) = S(r).

By construction of H, H has at most simple poles and poles of H can only
occur at poles of F and G, and zeros of F ′ or G′ (for details, see [3, 4]). Since
F and G share ∞ with weight 2, thus

N(r,∞;H)(2.2)

≤
k∑

j=1

(
N(r, λj ; f) +N(r, λj ; g)

)
+N0(r, 0; f ′) +N0(r, 0; g′)

+N(r,∞; f) +N(r,∞; g) +N∗(r,∞;F,G),

where λ1, λ2, . . . , λk are the distinct zeros of P ′(z). (Here we write N0(r, 0; f ′)
for the reduced counting function of zeros of f ′, which are not zeros of

∏n
i=1(f−

αi)
∏k

j=1(f−λj). Similarly N0(r, 0; g′) is defined. Also we write N∗(r,∞;F,G)
to denote the reduced counting function of those poles of F whose multiplicities
differ from the multiplicities of the corresponding poles of G.)

Now the Laurent series expansion of H shows that H has a zero at every
simple pole of F (hence, that of G). Thus using the first fundamental theorem,
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we conclude that

N(r,∞;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r),(2.3)

where N(r,∞;F | = 1) is the counting function of simple poles of F . Thus
combining the inequalities (2.2) and (2.3), we obtain

N(r,∞;F ) +N(r,∞;G)−N0(r, 0; f ′)−N0(r, 0; g′)

≤
k∑

j=1

(
N(r, λj ; f) +N(r, λj ; g)

)
+N(r,∞; f) +N(r,∞; g)

+N(r,∞;F | ≥ 2) +N(r,∞;G) +N∗(r,∞;F,G) + S(r)

≤
k∑

j=1

(
N(r, λj ; f) +N(r, λj ; g)

)
+N(r,∞; f) +N(r,∞; g)

+
1

2
{N(r,∞;F ) +N(r,∞;G)}+ S(r).

The second fundamental theorem applied to f and g gives

(n+ k − 1) (T (r, f) + T (r, g))

≤ N(r,∞; f)+

n∑
i=1

N(r, αi; f)+

k∑
j=1

N(r, λj ; f)−N0(r, 0; f ′)+N(r,∞; g)

+

n∑
i=1

N(r, αi; g) +

k∑
j=1

N(r, λj ; g)−N0(r, 0; g′) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +

k∑
j=1

(
N(r, λj ; f) +N(r, λj ; g)

)
+N(r,∞;F ) +N(r,∞;G)−N0(r, 0; f ′)−N0(r, 0; g′) + S(r)

≤ 2
(
N(r,∞; f) +N(r,∞; g)

)
+ (2k +

n

2
) (T (r, f) + T (r, g)) + S(r),

which contradicts the assumption n ≥ 2k + 7 (resp. n ≥ 2k + 3). Thus from
now we assume that H ≡ 0. Then by integration, we obtain

1

P (f(z))
≡ c0
P (g(z))

+ c1,(2.4)

where c0 is a non zero complex constant. Thus

T (r, f) = T (r, g) +O(1).

Now we distinguish two cases:
Case-I. Assume that c1 6= 0. Then equation (2.4) can be written as

P (f) ≡ P (g)

c1P (g) + c0
.
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Thus

N(r,−c0
c1

;P (g)) ≤ N(r,∞;P (f)) = N(r,∞; f).

Since P (z)−P (0) has m1 simple zeros and m2 multiple zeros, so we can assume

P (z)− P (0) = (z − b1)(z − b2) · · · (z − bm1
)(z − c1)l1(z − c2)l2 · · · (z − cm2

)lm2 ,

where li ≥ 2 for 1 ≤ i ≤ m2. Moreover, li < n as P ′(z) has at least two zeros.
If P (0) 6= − c0

c1
, then the first and second fundamental theorems to P (g) give

nT (r, g) +O(1)

= T (r, P (g))

≤ N (r,∞;P (g)) +N (r, P (0);P (g)) +N

(
r,−c0

c1
;P (g)

)
+ S(r, P (g))

≤ N (r,∞; g) +N (r,∞; f) + (m1 +m2)T (r, g) + S(r, g),

which is impossible as n ≥ m1 + m2 + 3 (resp. n ≥ m1 + m2 + 1). Thus
P (0) = − c0

c1
. Hence

P (f) ≡ P (g)

c1(P (g)− P (0))
.

Thus every zero of g− bj (1 ≤ j ≤ m1) has a multiplicity at least n, and every
zero of g − ci (1 ≤ i ≤ m2) has a multiplicity at least 2.

Thus applying the second fundamental theorem to g, we have

(m1 +m2 − 1)T (r, g)

≤ N(r,∞; g) +

m1∑
j=1

N(r, bj ; g) +

m2∑
i=1

N(r, ci; g) + S(r, g)

≤ N(r,∞; g) +
1

n

m1∑
j=1

N(r, bj ; g) +
1

2

m2∑
i=1

N(r, ci; g) + S(r, g)

≤ N(r,∞; g) +
m1 +m2

2
T (r, g) + S(r, g),

which is impossible as m1 +m2 ≥ 5 (resp. 3).
Case-II. Next we assume that c1 = 0. Then equation (2.4) can be written as

P (g) ≡ c0P (f).

Since P is a strong uniqueness polynomial, thus

f ≡ g.
This completes the proof. �

Proof of Theorem 2.2. Since strong uniqueness polynomials are uniqueness
polynomials, so we only prove the case (ii)⇒(i). It is given that P (z) is a
uniqueness polynomial. Assume that

P (g) = c0P (f),
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where f and g are two non-constant meromorphic functions and c0 is any non-
zero complex constant. Thus T (r, f) = T (r, g) +O(1). Now, if c0 6= 1, then

P (g)− P (0) ≡ c0(P (f)− P (0)

c0
).

Thus using the first and second fundamental theorems to P (f), we obtain

nT (r, f) +O(1)

= T (r, P (f))

≤ N (r,∞;P (f)) +N (r, P (0);P (f)) +N

(
r,
P (0)

c0
;P (f)

)
+ S(r, f)

≤ N (r,∞; f) + 2(m1 +m2)T (r, f) + S(r, f),

which contradicts our assumptions on n. Thus c0 = 1, i.e.,

P (f) ≡ P (g).

Since P (z) is a uniqueness polynomial, so f ≡ g. This completes the proof. �
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