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I. INTRODUCTION  

Learning by supervision means the input is being consid-
ered to map some output so that certain characteristics (here 
class characteristics) are identified/stored in the model. The 
stored identifying capability can be used for other applica-
tion (not the one in scratch learning) tasks, which we usu-
ally call transfer of knowledge or transfer learning [1-2]. 
Transfer learning has been a ‘de facto’ savior for most of 
the state-of-the-art deep learning applications [3-5]. The 
pretrained weights in the Convolutional Neural Network 
(CNN) models are finely tuned for the model to be applied 
in other processes. The major process for this is done by 
removing the final fully connected layer of 1000 output (for 
IMAGENET trained models like AlexNet [6], ResNet [7], 
VGG [8], GoogleNet [9]) into k numbers of output, where 
k represents the number of labels to be trained in the new 
task. This implication of the pretrained model into another 
application not only requires the transfer of weights but also 
requires the transfer of connection i.e., the whole model 
trained model is not transferred but just readjusted in its tail 
part for the new application. On the contrary, with scratch 
training, we need lots of supervising ground truth and at the 
same time since the whole network needs to learn from the 

training material (no external source for learning) it all 
starts from a ‘zero-level’. And to reach from zero-level to 
an acceptable ‘fitness’, we need a lot of time, and material 
and still the acceptable fitness may not be as good as from 
one already trained model [10]. 

Krizhevsky et al. [6] successfully utilized CNN in natural 
image classification (ImageNet Database of 1,000 image 
types of class) with a minimum error rate in 2012. Later 
various variants of CNN were proposed by different re-
searchers for image classification and object recognition 
tasks; the famous ones being Resnet, GoogleNet, and R-
CNN [11], etc. Tajbaksh et al. [1] tested CNN in medical 
images for poly detection and Pulmonary embolism detec-
tion, where they highlighted pretrained or fined-tuned CNN 
performed well as scratch-trained CNN and suggested 
layer-wise tuning for practical performance. Similarly, 
Hoo-Chang Shin et al. [12] tested CNN architecture for 
Lymph-Node detection and Interstitial Lung disease classi-
fication, where they also tested a pretrained CNN network 
(AlexNet, GoogLeNet and CifarNet) and also used the 
transfer learning technique. 

GoogLeNet (also called Inception V1) achieved a top-5 
error rate of 6.67% in the ILSVRC competition for the 
ImageNet classification challenge in 2014 which was very 
close to the human-level performance. It's an architecture 
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developed by Szegedy et al. [9] at Google Inc. It has 22 
layers and adopts multiple parallel convolution layer con-
catenation which is called the Inception module. The net-
work used a CNN inspired by LeNet but implemented a 
novel element which is dubbed an inception module. It uses 
batch normalization, image distortions, and RMSprop. This 
module is based on several very small convolutions in order 
to drastically reduce the number of parameters. Their archi-
tecture consisted of a 22-layer deep CNN but reduced the 
number of parameters from 60 million (AlexNet) to 4 mil-
lion. The key point is that the architecture uses a 1×1 con-
volution for the ensemble of features. The runner-up at the 
ILSVRC 2014 competition is VGGNet developed by Simo-
nyan and Zisserman from Oxford University [8]. Out of the 
six VGG models, VGG16 and VGG19 are frequently used. 
VGGNet consists of 16 convolutional layers and is very in-
teresting because of its uniform architecture using all 3x3 
convolutional filters with stride size 1. The weight config-
uration of the VGGNet is publicly available and has been 
used in many other applications and challenges as a base-
line feature extractor. However, it consists of 138 million 
parameters, which can be a bit challenging to handle. This 
structure is notable for its very simple methodology and has 
performed well. At last, at the ILSVRC 2015, the so-called 
Residual Neural Network (ResNet) by He et al. [7] pre-
sented a novel architecture with “skip connections” and 
substantial batch normalization. Such skip connections are 
also known as gated units or gated recurrent units and have 
a strong similarity to recent successful elements applied in 
RNNs. These skip connections also work as a residual con-
nection to preserve the image features by working as an 
identity function. It achieved a top-5 error rate of 3.57%. 

In this research, we are going to reinvestigate the transfer 
learning process mainly through the weights and feature 
analysis in the FCL layer. Here the reason for FCL selection 
is mainly because, of its simplicity and importance for the 
final decision. Additionally, this is the layer where all the 

channels/dimension rearranges into two-dimensional fea-
ture values [13]. In Section I we discuss the background of 
research, architecture details of CNN models, and some re-
lated work. In section II we discuss the methodology and 
the user data along with some training procedures. We pre-
sent our result in section III and provide concluding re-
marks in section IV. 

 

II. METHODOLOGY AND TRANSFER 
LEARNING REQUIREMENT 

We have used the OASIS dataset brain MRI scans for the 
experiment. The available MRI scans are in 3D format since 
the pre-trained models available are only 2D architecture, 
hence we need to use the 2D images as inputs, for which 
each MRI scan was converted from analyze format to jpeg 
format using MRIcon software. Around 30 mid slices were 
extracted from each MRI scan so in total it produced 840 
images each for NC and AD classes. These images were 
later split randomly in a 5:2:3 ratio for training, validation, 
and testing as shown in Table 1. All the used MRI scans are 
made publicly available to download at https://github.com/ 
xen888/Dataset. The reported accuracy is for the 30% test 
set images. Table 2 shows out of all 3 models, one with 
freezed weights from the pre-trained model has the lowest 
accuracy, whereas the accuracy is highest with either fine-
tuned or scratch trained. With fine-tuned we can save time, 
but might not get the best result, with scratch training, we 
need to train for higher epochs and might get the best result. 
However, with scratch training, we always have a chance of 
overfitting the model. 

Fig. 2 shows the feature plot of output FCL values (each 
with 2 scores one for AD and the other for MCI), being plot-
ted in its class label. This plot is not the weights, but the 
generated value as output from the model. Here each col-
ored dot represents the feature property of an induvial class 
i.e., blue color for AD MRI and red color for NC MRI. 
 

III. RESULT 

Simply, the training and testing result shows that a fine-
tuned model works better than a freezed model. However, 
if we spend more training time, the training will improve 
the test accuracy at the cost of a higher training epoch. 

Table 1. MRI scans used in experiments. 

Class Total number 
of scans 

Number of 
scans from  
single MRI 

Total train-
ing scans 

Total test-
ing scans

AD 840 30 420 252 
NC 840 30 420 252 

Fig. 1. Showing the problem of high dimensional pooling output
being flattened/condensed when used as input for a fully con-
nected layer. Here we are trying to show, that the spatial infor-
mation of each channel or activated output of the channel might
get lost when flattened in the FCL layer (from AlexNet architec-
ture). 
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Table 2. The result of freezed weights, fine-tuned weights, and scratch-trained weights from Resnet-101, GoogleNet, and VGG-19 mod-
els. These results are analyzed specifically for their patterns as in Fig. 2. ‘l’ beneath each DNN model name denotes the initial learning 
rate of the model, which drops by 10% after every 10 epochs. 

DNN 
model Fine or scratch Final training 

accuracy 
Final validation

accuracy (%) 
Test accuracy 

(%) 
Training 

time (min:sec)

ResNet-101 
(l=0.001) 

Freezed weight of ImageNet (20 epoch) 100 92.6 93.2 4:04 
Fine-tuned (20 epoch) 100 97.2 98.1 7:48 

Scratch-weightless (20 epoch) 100 95.8 96.5 8:29 
Scratch-weightless (50 epoch) 100 97.8 98.2 22:48 

GoogleNet 
(l=0.001) 

Freezed weight of ImageNet (30 epoch) 82 76.5 78.6 2:12 
Fine-tuned (30 epoch) 100 96.7 97.2 3:21 

Scratch-weightless (30 epoch) 99 96.4 96.8 3:10 

Scratch-weightless (60 epoch) 100 97.6 97.6 6:27 

VGG-19 
(l=0.0001) 

Freezed weight of ImageNet (30 epoch) 80 79.46 76.59 2:24 

Fine-tuned (30 epoch) 100 98.21 99.12 3:55 

Scratch-weightless (30 epoch) 88 83.63 88.69 3:52 

Scratch-weightless (60 epoch) 99 96.43 97.82 7:46 

 
(a)

 
(b) 

 
(c) 

 
(d) 

Fig. 2. The demonstration of features yielded from variously trained models, (a) Freezed weights, (b) fine-tuned weights, (c) scratch-
trained weights for 20 epochs, (d) scratch-trained weights for 50 epochs. Here each feature is obtained from the final FCL, and since all 
four models have very good test classification accuracy, the distribution of the class-wise feature (represented as colored dots) is highly 
discriminant. The x-axis and y-axis represent the weights value of the FCL layer for classes AD and NC respectively. Here, each color 
dots represent a single patient so the error might have resulted from the areas of overlapping between blue (AD) and red dots (NC).
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Table 2 shows the final result of 2D MRI images classifica-
tion using all three DNN models and trained under three 
different conditions as below:  
  
a. Freezed: Here the whole network uses the final weights 

of the pre-trained models, trained on the IMAGENET da-
taset and as it is available/stored. These weights of all lay-
ers are not changed at all during training. A fully con-
nected layer with 2 outputs is replaced with the original 
final FCL with 1,000 outputs, the input number being the 
same. 

b. Fine-tuned: Here the models have the original weights of 
pre-trained models as a freezed model. However, during 
training, these weights are slightly updated using Sto-
chastic gradient descent optimization during backpropa-
gation. Eventually, the weights are slightly tuned for our 
MRI classification task. 

c. Scratch-trained: Here we use the layers of the pre-trained 
model, but the weights are not transferred at all. It means 
the model has completely no weights (or say zero 
weights) before training. Once training starts depending 
upon the initialization algorithms the weight of each 
layer gets the value and updates via SGD optimization. 
Since the layer is weightless at the beginning, its value 
needs to be learned properly with input values during 
training hence called scratch training. Here we have used 
two versions of scratch training, one with a lower epoch 
e.g., scratch_20 denotes scratch training with only 20 
epochs it is done to compare the value of the weight with 
its freezed and finetuned version. Other is one with a 
higher epoch to reach full convergence i.e., 100% train-
ing accuracy. 

  
The classification performance is shown in Table 2. 

Here, it is interesting to note that the feature is sparsely dis-
persion in the case of freezed model and starts to be densely 
populated in scratch trained model. This might suggest that 
weights try to converge to a smaller range during scratch 
training or fine-tuning which is supported by the fact, that the 
accuracy of freezed model is comparatively lower than other 
fine-tuned and scratch-trained models (see Table 2). It means 
when sparsely dispersed the features are difficult to be clas-
sified. Also note the difference in the number of parameters 
i.e., weight values, e.g., in VGG-19 has 4,096×2, here it 
means 4,096 weights supporting for AD (1st dimension or 
x-axis) features and other 4,096 weights supporting for NC 
(2nd dimension or y-axis) features. Here each dimension in 
the x-y axis corresponds to each class, i.e., the x vs. y plot 
can be considered as the AD vs. NC plot because the first 
row of FCL is responsible for making decisions for the AD 
class and 2nd row is responsible for making decisions for 
the NC class. 

 

 
 

 

  
 

 

 
Fig. 3. Weight dispersion pattern of 3 DNN models from top to bottom 
ResNet101, GoogleNet, and VGG-19. Each of these figures shows 
the plot of FCL weights of a trained model. 
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Here more important is the feature distribution pattern as 
shown in Fig. 2. Fig. 2 shows how the feature distribution 
varies from complete weight transfer to no weight transfer. 
Since the freezed model uses pre-trained weights obtained 
by training from IMAGENET images [14], it is not very 
supportive for MRI classification (Fig. 2(a)) so, it requires 
fine-tuning to change the weights to converge into 2 classes 
properly which is as shown in Fig. 2(b). Fig. 2(c) and Fig. 
2(d) show the result of scratch training, features are not 
properly distinguished and seems condensed with under-
training i.e., for only 20 epoch. However, features start to 
be sparsely distributed under full training i.e., 50 epochs. 
Similarly, Fig. 3 shows the weight plots of each model. The 
number of weights for input for FCL is 1,024, 2,048, and 
4,096 for GoogleNet, ResNet101, and VGG-19 respec-
tively. With the higher number of inputs being encoded to 
the smaller output (i.e., 2), we might lose lots of spatial in-
formation due to a tremendous reduction in dimension. 
When using a pre-trained model along with FCL weights 
we need to condense the high number of input variables into 
very small output variables equal to the number of classes. 
As well as the congestion of high input to low output also 
raises a bottleneck problem, which brings difficulty in en-
coding and reduces the variability of outputs.  
 

IV. CONCLUSION 

In this work, we tried to analyze the class correlation of 
weights from FCL of various CNN-trained models. This 
also shows how the architecture plays role in giving classi-
fication accuracy along with its length and depth. Conse-
quently, this work is just an attempt to understand how the 
flattening process works. We tried to analyze the 2D feature 
distribution process in DNN and besides tried to analyze the 
weights dispersion pattern. This is an initial work; we hope 
we can endeavor more understanding of these phenomena 
in the future. 
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