DOI QR코드

DOI QR Code

Zircon U-Pb and Rare Earth Elements Analyses on Banded Gneiss in Euiam Gneiss Complex, Central Gyeonggi Massif: Consideration for the Timing of Depositional Event and Metamorphism of the Basement Rocks in the Gyeonggi Massif

경기육괴 중부 의암 편마암 복합체 호상편마암의 저어콘 U-Pb 연령과 미량원소: 경기육괴 기반암의 퇴적 시기와 변성작용에 대한 고찰

  • Lee, Byung Choon (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Deung-Lyong (Geology Division, Korea Institute of Geoscience and Mineral Resources)
  • 이병춘 (한국지질자원연구원 국토지질연구본부 지질연구센터) ;
  • 조등룡 (한국지질자원연구원 국토지질연구본부 지질연구센터)
  • Received : 2022.08.09
  • Accepted : 2022.09.21
  • Published : 2022.09.30

Abstract

The zircon U-Pb and trace element analyses were performed for banded gneiss in the Euiam gneiss complex, central Gyeonggi Massif. An age of detrital zircon shows predominant age peaks at ca. 2500-2480 Ma with numerous ages ranging from Siderian to Rhyacian period. The youngest age peak of detrital zircon constrains the maximum deposition age of protolith of banded gneiss at ca. 2070 Ma. Meanwhile, the zircon rim yielded metamorphic age of ca. 1966 ± 39 Ma ~ 1918 ± 13 Ma. Based on the error range, degree of discordancy, and value of mean squared weighted deviation, we considered that the age of 1918 ± 13 Ma is the most reasonable age indicating the timing of metamorphism for banded gneiss. The zircon rims yield Ti-in-zircon crystallization temperature of 690-740℃. Therefore, we suggested that there was a high-grade metamorphic event in the Gyeonggi Massif at ca. 1918 Ma which is older than the metamorphic event that occurred in the Gyeonggi Massif during ca. 1880-1860 Ma.

경기육괴 중부 의암 편마암 복합체에 분포하는 호상편마암에 대해 저어콘 연대 및 희유원소 분석을 진행했으며 분석 결과를 토대로 경기육괴 기반암류 모암의 퇴적시기와 이들의 변성작용 및 변성시기에 대해 검토하였다. 호상편마암의 쇄설성 저어콘은 신시생대와 고원생대 경계 부근(2500-2480 Ma)에서 가장 두드러진 연령 피크를 보이며 이들과 함께 고원생대 중기 시데로스기부터 라이악스기에 해당하는 다수의 연령이 확인되었다. 쇄설성 저어콘의 가장 젊은 연령 피크는 2070 Ma로 확인되었으며 이는 호상편마암 모암의 퇴적 시기가 적어도 2070 Ma 이후였음을 의미한다. 한편, 저어콘 외연부에서 1966 ± 39 Ma ~ 1918 ± 13 Ma에 해당하는 변성작용 연령이 확인되었으며 오차범위, 불일치도 그리고 평균 제곱 가중편차 값을 고려할 때 1918 ± 13 Ma가 가장 합리적인 변성작용 시기를 지시하는 것으로 보인다. 이들 저어콘 외연부의 결정화 온도는 690-740℃로 확인되었다. 따라서 경기육괴에서는 1880-1860 Ma에 일어난 광역변성작용 이전에도 고도의 변성작용이 있었던 것으로 판단된다.

Keywords

Acknowledgement

논문의 부족한 부분을 개선하도록 유익한 의견을 주신 김형수 교수님과 익명의 심사위원께 감사드립니다. 본 연구는 한국지질자원연구원의 기본사업 GP2020-003과 GP2021-004과제의 일환으로 수행되었습니다.

References

  1. Cheong, A.C.S., Jo, H.J., Jeong, Y.J. and Li, X.H., 2019, Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. GSA Bulletin 131, 609-634. https://doi.org/10.1130/B32021.1
  2. Cho, D.-L., 2004, Mineral separation and sample preparation methods efficient for subgrain zircon analyses. Journal of the Petrological Society of Korea, 13, 126-132.
  3. Cho, D.-L., Kim, Y.-J. and Armstrong, R., 2006, SHRIMP U-Pb geochronology of detrital zircons from Iron-bearing quartzite of the seosan group: constraints on age and stratigraphy. Journal of Petrological Society of Korea 15, 119-127.
  4. Cho, D.-L. and Lee, S.-B., 2017, 1:100,000 Tectonostratigraphic Map of the Gimpo-Incheon Area, Map 1: Solid Geology Interpretation. Korea Institution of Geoscience and Mineral Resources.
  5. Cho, D.-L., Takahashi, Y., Kim, S.W., Yi, K. and Lee, B.C., 2021, Zircon U-Pb-Hf and geochemical analyses of paragneiss and granitic gneiss from Oki-Dogo Island, Southwest Japan and its tectonic implications. Lithos 396, 106217.
  6. Cho, M., Kim, H., Lee, Y., Horie, K. and Hidaka, H., 2008, The oldest (ca. 2.51 Ga) rock inSouth Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geoscience Journal 12, 1-6. https://doi.org/10.1007/s12303-008-0001-1
  7. Cho, M., Kim, T., Yang, S. and Yi, K., 2017, Paleoproterozoic to Triassic crustal evolution of the Gyeonggi Massif, Korea: Tectonic correlation with the North China craton. In: Law, R.D., Thigpen, J.R., Merschat, A.J. and Stowell, H. (Eds.), Linkages and Feedbacks in Orogenic Systems. Geological Society of America Memoir 213.
  8. Claoue-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Aranalysis. Geochronology Time Scales and Global Strati-graphic Correlation. SEPM Special Publication, pp. 3-21.
  9. Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P., 2003, Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469-500. https://doi.org/10.2113/0530469
  10. Ferry, J.M. and Watson, E.B., 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429-439. https://doi.org/10.1007/s00410-007-0201-0
  11. Geological Society of Korea, 1999, Geology of Korea, Sigmapress, Seoul (in Korean). Harley, S.L., 2016. A matter of time: the importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences 111, 50-72. https://doi.org/10.2465/jmps.160128
  12. Horie, K., Tsutsumi, Y., Kim, H.C., Cho, M.S., Hidaka, H. and Terada, K., 2009, A U-Pb geochronological study of migmatitic gneiss in the Busan gneiss complex, Gyeonggi Massif, Korea. Geoscience Journal 13, 205-215. https://doi.org/10.1007/s12303-009-0021-5
  13. Kee, W.S., Kim, S.W., Hong, P.S., Lee, B.C., Cho, D.R., Byun, U.H., Ko, K., Kwon, C.W., Kim, H.C., Jang, Y., Song, K.Y., Koh, H.J. and Lee, H.J., 2020, 1:1,000,000 Geological Map of Korea. Korea Institute of Geoscience and Mineral Resources.
  14. Kim, J. and Choi, S.H., 2021, Petrogenesis and tectonic implications of the late Paleoproterozoic (ca. 1.7 Ga) postcollisional magmatism in the southwestern Gyeonggi Massif at Garorim Bay, South Korea. Journal of Asian Earth Science X 5, 100050.
  15. Kim, J., Park, J.-W., Lee, M.J., Im, S. and Oh, C.W., 2022, Petrogenesis of the Yeonhwa ultrapotassic intrusions in the Yeongnam Massif-Evidence for enrichment of the Triassic continental lithospheric mantle beneath the Korean peninsula. Lithos 422-423, 106739. https://doi.org/10.1016/j.lithos.2022.106739
  16. Kim, O. J., Kim, S.U., Hwa, Y.B. and Park, B.K., 1974, Explanatory Text of the Geological Map of Gapyeong Sheet: 6727-III, Scale 1:5000. Geological and Mineral Instituteof Korea, pp. 1-26 (in Korean with English summary).
  17. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, T. and Kim, S.J., 2016, SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: a new tectonic model of the Cretaceous Korean Peninsula. Lithos 262, 88-106. https://doi.org/10.1016/j.lithos.2016.06.027
  18. Kim, S.W., Cho, D.-L., Lee, S.-B., Kwon, S., Park, S.-I., Santosh, M. and Kee, W.S., 2018, Mesoproterozoic magmatic suites from the central-western Korean Peninsula: Imprints of Columbia disruption in East Asia. Precambrian Research 306, 155-173. https://doi.org/10.1016/j.precamres.2017.12.038
  19. Kim, S.W., Kee, W.-S., Santosh, M., Cho, D.-L., Hong, P.S., Ko, K., Lee, B.C., Byun, U.H. and Jang, Y., 2020, Tracing the Precambrian tectonic history of East Asia from Neoproterozoic sedimentation and magmatism in the Korean Peninsula. EarthScience Reviews 209, 103311.
  20. Kim, S.W., Kwon, S., Jeong, Y.-J., Kee, S.W., Lee, B.C., Byun, U.H., Ko, T., Cho, D.-L., Hong, P., Park, S.-I. and Santosh, M., 2021, The Middle Permian to Triassic tectono-magmatic system in the southern Korean Peninsula. Gondwana Research 100, 302-322. https://doi.org/10.1016/j.gr.2020.11.017
  21. Lee, B.C., Oh, C.W., Yengkhom, K.S. and Yi, K., 2014, Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton. Precambrian Research 248, 17-38. https://doi.org/10.1016/j.precamres.2014.04.003
  22. Lee, B.C., Kee, W.-S., Byun, U.H. and Kim, S.W., Statherian (ca. 1714-1680 Ma) Extension-Related Magmatism and Deformation in the Southwestern Korean Peninsula and Its Geological Significance: Constraints from the Petrological, Structural, Geochemical and Geochronological Studies of Newly Identified Granitoids. Minerals 11, 557.
  23. Lee, B.C., Kim, M.G. and Cho, D.-L., 2022, Zircon U-Pb ages from Paleoproterozoic migmatites in the western part of Yeongnam Massif: implication for the depositional ages of sedimentary protoliths. Journal of Geological Society of Korea 58, 51-66. https://doi.org/10.14770/jgsk.2022.58.1.51
  24. Lee, S.H., Oh, C.W. and Park, J.-W., 2020, The age and geochemistry of the mid-Cretaceous volcanic rocks in the Jinan Basin: Implications for the mid-Cretaceous tectonic environments of the Korean Peninsula and Northeast Asia. Lithos 358-359, 105383. https://doi.org/10.1016/j.lithos.2020.105383
  25. Lee, S.R. and Cho, M., 2003, Metamorphic and tectonic evolution of the Hwacheon granulite complex, central Korea: composite P-T path resulting from two distinct crustal-thickening events. Journal of Petrology 44, 197-225. https://doi.org/10.1093/petrology/44.2.197
  26. Lee, S.R. and Cho, K., 2012, Precambrian Crustal Evolution of the Korean Peninsula. Journal of Petrological Society of Korea, 21, 89-112. https://doi.org/10.7854/JPSK.2012.21.2.089
  27. Liu, J., Wang, X. and Chen, H., 2021, Intracontinental extension and geodynamic evolution of the Paleoproterozoic Jiao-Liao-Ji belt, North China craton: Insights from coeval A-type granitic and mafic magmatism in eastern Liaoning Province. GSA Bulletin 133, 1765-1792. https://doi.org/10.1130/B35819.1
  28. Oh, C.W. and Lee, B.C., 2019, The relationship between systematic metamorphic patterns and collisional processes along the Qinling-Sulu-Odesan collisional belt between the North and South China Cratons. Geological Society, London, Special Publications, 478, 449-475. https://doi.org/10.1144/SP478.5
  29. Oh, C.W., Imayama, T., Lee, S.Y., Yi, S.B., Yi, K. and Lee, B.C., 2015, Permo-Triassic and Paleoproterozoic metamorphism related to continental collision in Yangpyeong, South Korea. Lithos 216-217, 264-284. https://doi.org/10.1016/j.lithos.2014.12.016
  30. Oh, C.W., Lee, B.C., Yi, S. and Ryu, H.I., 2019, Correlation of Paleoproterozoic igneous and metamorphic events of the Korean Peninsula and China; its implication to the tectonics of Northeast Asia. Precambrian Research 326, 344-362. https://doi.org/10.1016/j.precamres.2018.03.010
  31. Paces, J.B. and Miller Jr., J.D., 1993, Precise U-Pb ages of Duluth complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research: Solid earth 98, 13997-14013. https://doi.org/10.1029/93JB01159
  32. Rubatto, D., 2017, Zircon: the metamorphic mineral. Reviews in Mineralogy and Geochemistry 83, 261-295. https://doi.org/10.2138/rmg.2017.83.9
  33. Santosh, M., Hu, C.-N., Kim, S.W., Tang, L. and Kee, W.S., 2018, Late Paleoproterozoic ultrahigh-temperature metamorphism in the Korean Peninsula. Precambrian Research 308, 111-125. https://doi.org/10.1016/j.precamres.2018.02.010
  34. Wang, X., Oh, C.W., Lee, B.C. and Liu, F., 2020, Paleoproterozoic postcollisional metamorphic and igneous activities in the Jinan area of the Jiao-Liao-Ji Belt in the North China Craton and their tectonic implications. Precambrian Research, 346, 105793. https://doi.org/10.1016/j.precamres.2020.105793
  35. Watson, E.B., Wark, D.A. and Thomas, J.B., 2006, Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151, 413-433. https://doi.org/10.1007/s00410-006-0068-5
  36. Wang, X.P., Oh, C.W., Peng, P., Zhai, M., Wang, X. and Lee, B.Y., 2020, Distribution pattern of age and geochemistry of 2.18-2.14 Ga I- and A-type granites and their implication for the tectonic of the Liao-Ji belt in the North China Craton. Lithos 364-365, 105518. https://doi.org/10.1016/j.lithos.2020.105518
  37. Yengkhom, K.S., Lee, B.C., Oh, C.W. and Yi, K., 2014, Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton. Precambrian Research 240, 37-59. https://doi.org/10.1016/j.precamres.2013.10.016
  38. Zong, K., Klemd, R., Yuan, Y., He, Z., Guo, J., Shi, X., Liu, Y., Hu, Z. and Zhang, Z., 2017, The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research 290, 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
  39. Zhu, K., Liu, Z., Xu, Z., Liu, J. and Wang, X., 2019, Paleoproterozoic Granitoids on Liaodong Peninsula, North China Craton. Acta Geologica Sinica 93, 1377-1396. https://doi.org/10.1111/1755-6724.14387