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JACOBIAN VARIETIES OF HYPERELLIPTIC CURVES WITH

MIXED SYMMETRIC FORMAL TYPE

Gyoyong Sohn

Abstract. This paper considers the Jacobian variety of a hyperelliptic

curve over a finite field with mixed symmetric formal type. We present

the Newton polygon of the characteristic polynomial of the Frobenius en-
domorphism of the Jacobian variety. It gives a useful tool for finding the

local decomposition of the Jacobian variety into isotypic components.

1. Introduction

The Newton polygon, p-rank and Ekedahl-Oort type are discrete invariants of
an abelian variety in positive characteristic p. These give important information
about abelian variety defined over finite fields (e.g., [2, 3] and [4]). In [5], Yui
gaves the characterization of Jacobian variety of hyperelliptic curves with the
help of the Cartier-Manin matrix of curve. In this paper, we consider the
Jacobian variety of the hyperelliptic curve over finite field whose Cartier-Manin
matrix has determinant zero. We show the Jacobian variety of hyperelliptic
curve with new formal structure of the mixed symmetric type. The formal
group of the Jacobian variety is the connected component of the p-divisible
group of the Jacobian variety.

Let Fq be a finite field with q = pn elements for prime p. Let C be a
hyperelliptic curve of genus g defined over Fq and JC denote its Jacobian variety.
Let Mr = ♯C(Fqr ) be the number of points of C defined over Fqr , for r ≥ 1.
The zeta function of C is

Z(C/Fq, t) = exp
( ∞∑

r=1

Mrt
r/r

)
.

By the Weil conjectures for curves [6, 7], the zeta function Z(C/Fq, t) can be
written as

Z(C/Fq, t) =
L(C/Fq, t)

(1− t)(1− qt)
,
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where L(C/Fq, t) is the L-polynomial of C. Let Tl(JC) be the l-th Tate module
of JC and Vl(JC) = Tl(JC) ⊗Zl

Ql be the corresponding vector space over Ql.
For l ̸= p, the characteristic polynomial of the Frobenious endomorphism πJC

of JC is defined as

P (JC/Fq, t) = det(πJC
− tId | Vl(JC)).

Then P (JC/Fq, t) = t2gL(C/Fq, t). Furthermore, L(C/Fq, t) is factored as

L(C/Fq, t) =

g∏
i=1

(1− αit)(1− αit),

where each αi is a complex number of absolute value
√
q and αi denotes the

complex conjugate of αi. Moreover, P (JC/Fq, t) is a monic polynomial of degree
2g with rational integer coefficients of the form

P (JC/Fq, t) = t2g + a1t
2g−1 + · · ·+ agt

g + qag−1t
g−1 + · · ·+ qg−1a1t+ qg,

(1)

for all ai ∈ Z, 1 ≤ i ≤ g. For simplicity, we write P (t) instead of P (JC/Fq, t).

Remark 1. Let vp be the p-adic valuation of Qp and let νp denote the unique

extension of the p-adic valuation vp to the algebraic closureQp ofQp, normalized

so that νp(p) = 1. The Newton polygon of P (t) =
∑2g

i=0 ait
i ∈ Z[t] over Qp is

the lower envelope of the set of the points {(i, vp(ai))|0 ≤ i ≤ 2g} in R× R.

2. Cartier-Manin matrix

In this section, we recall the definition of the Cartier-Manin matrix in the
case of hyperelliptic curves. Let K = Fq(C) be a function field of C of one
variable over Fq and let Kp denote the subfield of p-th powers. Let ΩK be
the space of all differential forms of degree 1 on K and let x be a separably
generating transcendental element in K\Kp. Then every differential ω ∈ ΩK

can be written uniquely as

ω = dλ+ apxp−1dx,

with λ, a ∈ K, ap ∈ Kp. The (modified) Cartier operator C : ΩK → ΩK is
defined as C(x) = adx.

Let ω=(ω1, . . . , ωg) be a basis of ΩK . Then there is g × g matrix A = (ai,j)
with coefficients in Fq such that

C(ω) = A(1/p)ω,

where A1/p denotes a
1/p
i,j . The matrix A is called the Cartier-Manin matrix of

the hyperelliptic curve C.
In [1], Manin showed that this matrix is related to the characteristic polyno-

mial of the Frobenius endomorphism πJC
modulo p. Then, we have the following

theorem.
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Theorem 2.1. Let C be a curve of genus g defined over a finite field Fpn . Let A

be the Cartier-Manin matrix of C and let Aπ = AA(p)A(p2) · · ·A(pn−1). Let κ(t)
be the characteristic polynomial of the matrix Aπ and χ(t) the characteristic
polynomial of the Frobenius endomorphism of JC . Then, we have

χ(t) ≡ (−1)gtgκ(t) (mod p).

Proof. See [1]. □

Note that this theorem provides a very efficient method to compute the
characteristic polynomial of the Frobenius endomorphism and the group order
of the Jacobian of C modulo p.

3. Jacobian variety of C

In this section, we present the Newton polygon of the characteristic poly-
nomial of the Frobenius endomorphism of JC with mixed symmetric formal
type.

In [5], Yui gave a complete characterization of the ordinary Jacobian variety
JC of C whose Cartier-Manin matrix has determinant zero in Fq. In the case
of determinant |A| = 0, there are useful results to determine the algebraic
structure of Jacobian variety JC of C. Now we discuss the Jacobian variety JC
of C whose A has determinant zero in Fq.

Theorem 3.1. Suppose that the Cartier-Manin matrix A of C has the determi-

nant |A| = 0 in Fq and the matrix Aπ = AA(p) · · ·A(pn−1) has rank 0. Then the

characteristic polynomial P (t) has the p-adic decomposition P (t) =
∏2g

i=1(t−αi)
with 0 < νp(αi) < n.

Theorem 3.1 gives a decomposition of P (t) over Qp. Then we can factor P (t)
into the form

P (t) =

2s∏
i=1
νp(αi)=n/2

(t− αi)

r∏
i=1,
νp(αi)=0

(t− αi)(t− αi)

g−s−r∏
i=1,
0<νp(αi)<n/2

(t− αi)(t− αi),

(2)

where 2s (resp., r) the number of the p-adic roots αi of P (t) with vp(αi) = n/2
(resp., 0). There are the algebraic structure of Jacobian variety JC up to isogeny,
in the cases [s = g, r = 0], [s = 0, r = 0], and [0 < s < g, 0 < r < g], respectively.
Now, we consider the Jacobian variety with the characteristic polynomial of
mixed symmetric formal type in the case [s = 0, r = 0].

Theorem 3.2. [5] Suppose that the Cartier-Manin matrix A of C has the de-

terminant |A| = 0 in Fq and the matrix Aπ = AA(p) · · ·A(pn−1) has rank 0. The
following statements are equivalent :
(a) P (t) =

∏g
i=1(t−αi)(t−αi) with αi simple roots and νp(αi) = nλ, 0 < λ < 1

2
for every 1 ≤ i ≤ g,
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(b) P (t) =
∑2g

i=0 ait
i is a distinguished polynomial over Zp and the coefficients

ai satisfy the condition:

min
0≤i≤2g

vp(ai)

in
=

vp(ag)

gn
= λ =

µλ

µλ + ωλ
,

where µλ, ωλ are positive integers such that 1 ≤ µλ < ωλ, (µλ, ωλ) = 1, and
µλ + ωλ = g.

Proof. See [5]. □

Now we consider the characteristic polynomial P (t) of JC with degree m for
positive integer m.

Lemma 3.3. The hypothesis and the notation are as in Theorem 3.2. Let
PA(t) =

∏m
i=1(t − αi)(t − αi) with αi complex numbers, and νp(αi) = nλ,

0 < λ < 1
2 for 1 ≤ i ≤ m. If P (t) =

∑2m
i=0 ait

i is an equivalent polynomial over
Zp with related to PA(t), then the coefficients ai satisfy the condition:

vp(am) = mλn and vp(a(m−i)) ≥ (m− i)λn

where

λ =
µλ

µλ + ωλ
(3)

is a rational number such that 1 ≤ µλ < ωλ, (µλ, ωλ) = 1, and µλ + ωλ = m
for positive integers µλ, ωλ.

Proof. Suppose that the characteristic polynomial P (t) has the following form :
P (t) =

∏m
i=1(t−αi)(t−αi) with νp(αi) = λn, 0 < λ < 1

2 for λ ∈ Z, 1 ≤ i ≤ m.
It is the case of s = 0 and r = 0 in (2). Put αi = αm+i for 1 ≤ i ≤ m. Then
we have νp(αi) = λn, νp(αm+i) = (1 − λ)n for 1 ≤ i ≤ m, from which we
have that vp(a0) = 0, vp(ai) ≥ λin for every 1 ≤ i ≤ m, vp(am) = mλn, and
vp(am+i) ≥ mλn+ (1− λ)in for 1 ≤ i ≤ m. Hence it follows that

vp(ai)

in
≥ λ,

vp(am)

mn
= λ, and

vp(am+i)

(m+ i)n
≥ λ.

Therefore, we get

min
0≤i≤2m

vp(ai)

in
=

vp(am)

mn
= λ.

Now put µλ = λm and ωλ = m − µλ = (1 − λ)m. Then µλ, ωλ are positive
integers satisfying 1 ≤ µλ < ωλ, µλ + ωλ = m, (µλ, ωλ) = 1, and λ = µλ/(µλ +
ωλ). □

Our main result is the following theorem.

Theorem 3.4. Suppose that the Cartier-Manin matrix A of C has the determi-

nant |A| = 0 and the matrix Aπ = AA(p) · · ·A(pn−1) has rank 0. The following
statements are equivalent :
(a) The characteristic polynomial P (t) of Jacobian variety JC is decomposed
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into the product P1(t) and P2(t), where P1(t) =
∏g−l

i=1(t − αi)(t − αi) with

νp(αi) = λ1n, 0 < λ1 < 1/2 and P2(t) =
∏l

i=1(t−αi)(t−αi) with νp(αi) = λ2n
for 0 < λ2 < 1/2.

(b) The arbitrary polynomial over Zp is denoted by P (t) =
∑2g

i=0 ait
i and the

coefficients ai satisfy the conditions:

vp(ag−l) = (g − l)λ1n and vp(ag−l−j) ≥ (g − l − j)λ1n

for 1 ≤ j ≤ g − l − 1, where λ1 =
µλ1

µλ1
+ωλ1

is a rational number satisfying

1 ≤ µλ1
< ωλ1

, (µλ1
, ωλ1

) = 1, µλ1
+ωλ1

= l for positive integers µλ1
, ωλ1

, and

vp(ag−i) ≥ (g − l)λ1n+ (l − i)λ2n

for 1 ≤ i ≤ l−1, where λ2 =
µλ2

µλ2
+ωλ2

is a rational number satisfying 1 ≤ µλ2
<

ωλ2
, (µλ2

, ωλ2
) = 1, µλ2

+ ωλ2
= g − l for µλ2

, ωλ2
∈ Z+, and λ1 > λ2.

Proof. Assume the condition (1). Then P (t) = P1(t)P2(t) has the form

P (t) =

g−l∏
i=1,
νp(αi)=λ1n

(t− αi)(t− αi)

l∏
i=1,
νp(αi)=λ2n

(t− αi)(t− αi),(4)

for 0 < λ1, λ2 < 1/2. Let P1(t) =
∑2(g−l)

i=1 bit
i be an equivalent polynomial over

Zp related to P1(t) in (a). By Lemma 3.3, we consider the polynomials P (t) in
Zp with degree 2(g − l) and 2l, respectively. Then p-adic values bi of P1(t) are
vp(bg−l) = (g − l)λ1n, vp(bg−l−i) ≥ (g − l − i)λ1n where λ1 satisfies condition

(3) in Lemma 3.3. Let P2(t) =
∑2l

i=1 dit
i be an equivalent polynomial over Zp

related to P2(t) in (a). Then we have vp(bl) = lλ2n and vp(d(l−i)) ≥ (l − i)λ2n
where λ2 satisfies condition (3).

The p-adic values of bg−l and dl are vp(bg−l) =
∑g−l

i=1,νp(αi)=λ1n
= νp(αi) =

(g − l)λ1n and vp(dl) =
∑l

i=1,νp(αi)=λ2n
= νp(αi) = lλ2n, respectively. Since

vp(bg−l−j) = vp(ag−l−j), we have vp(ag−l−j) ≥ (g−l−j)λ1n for 1 ≤ j ≤ g−l−1.
The factorization P (t) = P1(t)P2(t) gives

vp(ag) = vp(bg−l) + vp(dl) = (g − l)λ1n+ lλ2n

and

vp(ag−i) ≥ vp(dl−i) + vp(bg−l) = (l − i)λ2n+ (g − l)λ1n,

for 1 ≤ i ≤ l − 1. □

Theorem 3.5. If the characteristic polynomial P (t) of the Jacobian variety JC
of C has the form (4), then the Newton polygon of P (t) has the segments L1,
L2, L3, L4 from the right with slopes −λ1n, −λ2n, −(1−λ2)n and −(1−λ1)n,
respectively. The Newton polygon of P (t) is represented in Figure 1.

Proof. By Theorem 3.4, the Newton polygon has the segments Li, 1 ≤ i ≤ 4
with line equations y = −λ1nx+ 2gλ1n, y = −λ2nx+ (g + l)λ2n+ (g − l)λ1n,
y = −(1−λ2)nx+gn+(g−l)n(λ1−λ2) and y = −(1−λ1)nx+gn respectively. □
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Figure 1.
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