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FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS
GROUPS OVER RING CLASS FIELDS

DoNG SUNG YOON

ABSTRACT. Let K be an imaginary quadratic field and O be an order
in K. Let Hp be the ring class field of O. Furthermore, for a positive
integer N, let Ko n be the ray class field modulo NO of O. When the
discriminant of O is different from —3 and —4, we construct an extended
form class group which is isomorphic to the Galois group Gal(Ko, n/Ho)
and describe its Galois action on Ko n in a concrete way.

1. Introduction

Let K be an imaginary quadratic field and O be an order in K of discriminant
D. We say that a nonzero O-ideal a is prime to a positive integer ¢ if a+£¢0 = O.
It is equivalent to saying that its norm N(a) = |O/a] is relatively prime to ¢
(cf. [2, Lemma 7.18 (i)] or [4, Lemma 2.2]). Let I(O) be the group of proper
fractional O-ideals and P(Q) be its subgroup of principal fractional O-ideals.
For positive integers £ and N, we define the subgroups of I(O) and P(O) by

I(0,¢) = {a|ais anonzero proper O-ideal prime to ),
Py(0,8) = (vO|veO\{0}, vO is prime to £ and v = 1 (mod NO)),
(1)
respectively. By the existence theorem of class field theory, there is a unique
abelian extension Ko y of K such that the Artin map induces an isomorphism
of Cn(O) = I(O,N)/Pn(O,N) onto Gal(Kop n/K) (|2, Theorem 8.6] and [4,
Propositions 2.8 and 2.13]). We call Ko y the ray class field modulo NO of O
or the extended ring class field of order O and level N (cf. [2, §15 B] or [7, §4]).
In particular, Ko is the ring class field Hp of O because I(O,1) = I(O) (cf.
[2, Exercise 7.7]), and Ko, n is the ray class field K(n) modulo (N) = NOk,
where O is the ring of integers of K.
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Let Q(D) be the set of primitive positive definite binary quadratic forms of
discriminant D. The proper equivalence ~ on Q(D) is given by

Q~Q = Q=Q*=Q (a B]) for some « € SLy(Z).

It is well known that the set C(D) = Q(D)/ ~ of equivalence classes with the
operation induced from Dirichlet composition becomes an abelian group, called
the form class group of discriminant D (cf. [2, Theorem 3.9]). Furthermore,
C(D) is isomorphic to the ideal class group C(O) = I(0)/P(O) via the map

C(D) — C(0)=1(0)/P(0O)
Q= az? + bay + cy?] [alwg, 1]]

(2)

where wq is the zero of Q(z,1) in the complex upper half-plane H (cf. [2,
Theorem 7.7]). Hence one can express Gal(Hp/K) (=2 C(O)) in terms of the
form class group C(D). Recently, Eum et al. established an extended form
class group isomorphic to the ray class group Cn(Ox) (= Gal(K(y)/K)) and
explicitly described its Galois action on the ray class field Ky over K ([3,
Theorems 2.9 and 3.10]).

In this paper, we shall construct an extended form class group Co v (D) which
is isomorphic to the subgroup P, (O, N)/Pn(O, N) of Cn(O) corresponding to
Gal(Ko,n/Ho) (Theorem 2.6). Furthermore, we shall give an isomorphism of
Co,n (D) onto Gal(Ko n/Ho) in a concrete way (Theorem 3.4).

2. The set Cy, n(D) of equivalence classes of quadratic forms

Throughout this paper, we let K be an imaginary quadratic field and O be
an order in K. Let M and D be the conductor and the discriminant of O,
respectively. Let Q(D) be the set of primitive positive definite binary quadratic
forms of discriminant D, namely,

Q(D) = {ax2 + by +cy? € Zlx, y] | ged(a, b, ¢) =1, b* —4dac= D, a > 0}.

For each Q = axz? + bxy + cy? € Q(D), let wg be the zero of the quadratic
polynomial Q(z, 1) lying in the complex upper half-plane H, that is,

o _—btVD
@7 Tq
Then one can readily show that for Q € Q(D) and o = {Z 2] € SLo(Z)

) (3)
and

[a(wg),1] = j(oz,le)[wQ’ 1], where j(o, wq) = uwg + v. (4)
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Here, SL2(Z) acts on H as fractional linear transformations. Let (o be the
principal form of discriminant D given by

1-D
o $2+xy+Ty2 ifD=1 (mod 4),
0= D
xz—zyz ifD=0 (mod 4).

Let wo = wg, and min(wo, Q) = 2% + box + co. Then we have O = [wo, 1]
and bp, co € Z ([2, Lemma 7.2]).
Let N be a positive integer and denote by

On(D) = {aa®+bay+ey? € QD) | ged(a, N) =1},
Qn(D) = {Qf|a € SLa(Z) satisfies Qf € Qn(D)}.
Then the congruence subgroup

Ty (N) = {a € SLy(Z) | a = Ll) ﬂ (mod NMQ(Z))}

induces an equivalence relation ~, on Qg y(D) as

Q~yQ = Q=0Q°=Q (a B]) for some a € 'y (N)
([3, Proposition 2.1 and Definition 2.2]). We denote the set of equivalence classes
by Co,n (D), that is,
Con(D) = Qon(D)/ ~n={[Q] | Q € Qo.n(D)}-
For a positive integer £, let 1(O,£) and Pn (O, ¥) be the groups defined in (1).

Lemma 2.1. Ifv € K* satisfies v —1 € Na~! for a proper O-ideal a prime
to N, then vO belongs to Pn(O, N).

Proof. Let v = 1+Na with a € a='. Since a is prime to N, that is, a+ NO = O,
we can select b € O such that

b = 1(mod NO),
b = 0(mod a)

by the Chinese remainder theorem ([5, Chapter II, Theorem 2.1]). Then we
have

bv =b+ N(ab) =1 (mod NO).
Therefore, vO = (bvQ)(bO)~! € Py(O, N).

Lemma 2.2. For v € O\ {0}, we have
Proof. See [2, Lemma 7.14]. O
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Lemma 2.3. If QF € Qo n(D) for some a = {Z f}] € SLa(Z), then we have

[wQ(c;, 1]71 € Pl(O, N)
Proof. Observe that

wag, 1J™" = [a7!(wo), 17" by (3)
= jla™Y,wo)O by (4) and the fact [wp,1] = O (5)
= (—uwp +1)0

which is a principal O-ideal. Note that the coefficient of 22 in QF is Qo(r,u)
which is relatively prime to N by assumption. Since

Nr/o(—uwo + 1) = (—uwo + r)(—uwo + 1) = r° + boru + cou® = Qo(r, u),
we obtain [wgs,1]7" € P1(O, N) by Lemma 2.2.
]
From now on, we assume D # —3, —4 so that O* = {1, -1} (cf. [2, p. 105]).
Definition 1. We define a map

¢0,(9,N5 C07N(D) — Pl(O,N)/PN O,N)
@ = [lwe, 1]~

for Q@ € Qo N (D).
Proposition 2.4. The map ¢o,0,n s well defined.

Proof. Let Q € Qo n(D). By Lemma 2.3, we have [wg,1]”! € Pi(O,N). If
Q' = d'z? +Vxy + y? € Qo n(D) satisfies [Q] = [Q'], then Q" = Q“ for some

o= L: j] € I'y (V). Thus we derive by (3) and (4) that

we, 17! = [a(wg), 1] 71 = j(a,wer)lwer, 1] = (uwgr +v)[wer, 17
If we write u = Nu' and v = 1 + Nv' for some u/,v" € Z, then we see that
(uwgr +v) — 1= Na' ' (v (d'wg/) +a'v') € Na' 1O

because O = [a’wg, 1] ([2, p. 124]). Moreover, since ged(a’, N) = 1, we get by
Lemma 2.1 that
(uwgr +v)O € Pn(O, N).
Hence [[wg, 1]7] = [[wgr, 1]7 ] in P (O, N)/Pn (O, N), which proves that ¢o.0, N
is well defined.
O

Proposition 2.5. The map ¢o,0,n is bijective.
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Proof. Suppose that ¢o,0. n([Q]) = ¢o,0,n([Q']) for some Q, Q" € Qy n(D) and
s0 [wq, 1]'] = [wqr, 1] 1]. Then

o 1] = %m ! (6)

for some B,y € O\ {0} satisfying 8 =~ = 1(mod NO). Since the map given
in (2) is an isomorphism, we have Q' = Q% for some o = [; ;j € SLy(Z). Tt
then follows from (3), (4), (6) that

o 1] = (uwqr + v)[wgr 17 = §<uw@ +0)fwo, 1],

Thus é(uwQ/ +v) € 0% = {1,-1}. If we write Q'(x,y) = a’2? + V'ay + 'y?,
Y
then we find that
uld'wg) +adv = pl{u(dwg )+ ad'v} (mod NO) because =1 (mod NO)
= dB(uwg +v) (mod NO)
= +d'y (mod NO)
= +4d (mod NO) because vy =1 (mod NO).
Since O = [d'wg, 1] and ged(a’, N) = 1, we obtain
u=0(mod N), wv==+1(mod N)
and hence

1 +s
0 1

because det(a) = 1. We may assume a € I'1(N) since Q* = Q~*. Thus we
have [Q] = [Q'] in Co, N (D), which implies that ¢ o n is injective.
Now, let C be a class in P,(O, N)/Py(O, N). Note that one can take an O-

ideal vO in C with v € O. Indeed, if C = 10| for some v1,vy € O\ {0} such

o=y ] moa m)

V2

that both 11O and 15O are prime to N, then we can choose a € O satisfying

a = 1(mod NO),

= 0(mod 1L0)
by the Chinese remainder theorem. If we let v = (:L) 1 € O, then we see
2
that
C = [a0] [”10} = (VO]
19

because [aO] € Py(O,N). Since O = [wo, 1], we get v = —uwe + r for some

r,u € Z. Observe that ged(r,u, N) = 1 because vO is prime to N. Thus we
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,rl /

may take a matrix a = [u’ Z,} in SLy(Z) such that

" =r(mod N), « =wu(mod N)

by the surjectivity of the reduction SLy(Z) — SLo(Z/NZ) (cf. [6, Chapter 6
§1]). Then we deduce by (5) that

[wae, 117" = (—v'wo + )0 = v (—v'wo + 1) (vO).
Since 1 = v~ (—uwe + 1), we see that
v i(—vwo +7)—1=v"(u—u)wo +1' —7) EVTINO.
Hence v~} (—v'we + 1')O € Py (O, N) by Lemma 2.1 and so
$0,0,8([Q5]) = [vO] = C.

This proves that ¢g o, ~ is surjective.

We define a binary operation - on Co, y(D) by
Q] 1Q'] = d5.0.n (0,08 (@) 00N ([Q)  ([Q Q] € Co,n(D)).  (7)

We then achieve the following theorem.

Theorem 2.6. Assume that D # —3,—4. The set Co (D) with the bi-
nary operation - in (7) is an abelian group isomorphic to the ideal class group
Pl(OaN)/PN(OaN)

3. An isomorphism of Cy, n(D) with Gal(Ko n/Hp)

In this section, we shall establish an isomorphism of Cy, 5 (D) onto Gal(Ko n/Hp)
in a concrete way.

For a positive integer N, let Fn be the field of meromorphic modular func-
tions of level N with Fourier coefficients in the cyclotomic field Q({x), where
(v = e2™/N (cf. [6, Chapter 6 §3]). It is well known that Fy is a Galois
extension of F; and

Gal(Fn/F1) &2 GLe(Z/NZ)/(— 1) = Gn - SLo(Z/NZ)/{—I5)
where

Gy = {[(1) 2] lde (Z/NZ)X}/<_12>.

More precisely, the element H(l) 2” € Gy acts on Fy by

Z quz}/N’_> Z Cqufrl/N

n>>>—oo n>>—oo



FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS GROUPS 589

N i s . . L
where > o can/ (¢ = €2™7) is the Fourier expansion of a function in

Fn and o4 is the element of Gal(Q({y)/Q) defined by (3¢ = (%. And, 7 €
SL2(Z/NZ)/{—1Is) acts on Fy by

W =hovy (heFy)

where 7y is a preimage of 7 of SLy(Z) — SLy(Z/NZ)/(—1I2) (cf. [6, Chapter 6,
Theorem 3]).

Proposition 3.1. We have
Ko n =K(h(wo) | h € Fn is finite at wo).

Proof. See [1, Theorem 4].
g

For a positive integer N, let

Wo,n = {7 - [t ‘Sbos —(;os] | s, t € Z/NZ such that v € GLQ(Z/NZ)} ,

which is the Cartan subgroup of GL2(Z/NZ) associated with the (Z/NZ)-
algebra O/NO with the ordered basis {wpo + NO, 1+ NO}.

Proposition 3.2 (Shimura’s reciprocity law). Assume that D # —3,—4. Then
the map

po,on i Wo n/(—I2) — Gal(Kon/Ho)

[7] —  (h(wo) = h¥(wo) | h € Fy is finite at wo)
is an isomorphism, where ¥ is the image of v in GLy(Z/NZ)/(—I2) (= Gal(Fn /F1))-
Proof. See [1, p. 859] or [2, Theorem 15.17]. O
Proposition 3.3. Assume that D # —3,—4. The map
Yo,0,N : Wo,n/(=I2) — Pi(O,N)/Py(O,N)
Ht —sb@s _CtOS” — [(swo + t)O]

s an isomorphism.

—CoS

o t— bOS
Proof. Let a = [ s .

} € Wo, n. Since

Ng/o(swo +t) = (swo +t)(swo +t) = cos® — bost +t* = det(a)  (8)
is relatively prime to N, (swo +t)O belongs to P; (O, N) by Lemma 2.2. Hence

Yo,0,n is well defined.

t' —bos’ —cos'

Furthermore, if 8 = [ o 4 ] € Wo, n, then we find that

0f = (—coss’ +tt') —bo(—boss’ + st’' + s't) —co(—boss’ + st’ + s't)
—bpss’ + st' + st —coss’ +tt’
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Thus we derive that

Yoon([a]lB]) = [((—boss’ + st' + s't)wo — coss’ + tt')O]
= [(swo +t)(s'wo +1)O] because whH = —bowo — co
= tho,0,n([a])tho,0,n([B])

which shows that 1,0, n is a homomorphism.
If [a] € ker(¢,0,n), then Yo o.n([a]) = (swo +t)O € Py(O,N) and so
(swo +1)0 = %(’) for some vy, s € O\ {0} satisfying 1 = v = 1 (mod NO).

2
Since O* = {1, —1}, we have va(swp + t) = £v;1. Hence we obtain that

swo +t = va(swo +t) = v = +1 (mod NO),

which follows from the fact that O = [we, 1], s = 0(mod N) and ¢ = £+1 (mod
N). Thus [a] = [I3], which yields that ¥ o n is injective.
Let C be a class in P;(O, N)/Pn (O, N). Take an O-ideal vO in C with v €
" — bps" —cos"

O. If we write v = s"we +t" with s”,t" € Z, then v = o o | €
WO,N by (8) and

Yo,0,n([7]) = [(s"wo +1")0] = C.
Therefore, 1 o, N is surjective. O

Theorem 3.4. Assume that D # —3,—4. Then the map

CO7N(D) — Gal(KOVN/Ho)

r+bou cou

{Q([)Zi]} = <h(wo) o LT ](wo) | h € Fy is finite at w@)

18 an isomorphism.

Proof. Note that the map ® = ug o no 1/;()_’%9 N ©®0,0,N is an isomorphism from
Co, n(D) onto Gal(Ko,n/Hp) by Theorem 2.6, Propositions 3.2 and 3.3. Let

Qf € Qon(D) with o = LZ Z] € SLy(Z). Then we achieve by (5) that

r+ bou couH

—Uu r

by woboon (1Q5]) = bob (e 1] = vy ([(—uso+)O]) = H

Therefore, we conclude that for h € Fn which is finite at we

h(wo)®(96D = pwoyoon (20" 9 1) 2 700" 9" (o)

as desired. |
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