DOI QR코드

DOI QR Code

Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices

임상에서 사용중인 탄도형 체외충격파 치료기의 음향 출력

  • 조진식 (제주대학교 의공학협동과정) ;
  • 권오빈 (제주대학교 의공학협동과정) ;
  • 전성중 (제주대학교 의공학협동과정) ;
  • 이민영 (한국화학융합시험연구원) ;
  • 김종민 (제주대학교 의공학협동과정) ;
  • 최민주 (제주대학교 의공학협동과정)
  • Received : 2022.08.12
  • Accepted : 2022.09.15
  • Published : 2022.09.30

Abstract

We scrutinized the acoustic outputs from the 70 shock wave generators of the 15 product models whose technical documents were available, among the 46 ballistic extracorporeal shock wave therapeutic devices of 11 domestic and 6 foreign manufacturers, approved by the Minster of Food & Drug Safety (Rep. Korea). We found that the acoustic Energy Flux Density (EFD), the most popular exposure parameter, was different by up to 563.64 times among shock wave generators at their minimum output settings and by up to 74.62 times at their maximum settings. In the same product model, the EFD was shown to vary depending on shock wave transmitters by up to 81.82 times at its minimum output setting and by up to 46.15 times at its maximum setting. The lowest EFD 0.013 mJ/mm2 at the maximum output settings was much lower (2.1 %) than the maximum value 0.62 mJ/mm2 at the minimum settings. The Large acoustic output differences (tens to hundreds of times)from the therapeutic devices approved for the same clinical indications imply that their therapeutic efficacy & safety may not be assured. The findings suggest the regulatory authority to revise her guideline to give clearer criteria for clinical approval and equality in performance, and recommend the authority to initiate a post-approval surveillance as well as a test in conformance between the data in technical documents and the real acoustic outputs clinically used.

식약처에서 허가된 국내 11개 및 국외 6개 제조사의 46개 탄도형 체외 충격파 치료기 중 기술 문서가 공개된 15개 제품 70개의 충격파 발생 장치에 대해 충격파 음향 출력을 조사했다. 조사 결과, 임상에서 가장 보편적인 피폭 변수로 사용되는 에너지 속 밀도(Energy Flux Density, EFD)는 치료기의 충격파 발생 장치에 따라 최소 출력 설정에서 최대 563.64배, 최대 출력 설정에서 최대 74.62배까지 차이가 나고 있다. 동일 모델 제품에서 충격파 변환자의 선택으로 EFD의 값은 최소 설정에서 최대 81.82배, 최대 설정에서 최대 46.15배 차이를 보이고 있다. 최대 출력 설정에서 EFD의 최저값 0.013 mJ/mm2이 최소 출력 설정에서 EFD의 최대값 0.62 mJ/mm2보다 훨씬 낮은 것(2.1 %)으로 나타났다. 동일한 적응증으로 허가 받은 탄도형 체외 충격파 치료기의 음향 출력이 수십~수백 배 차이가 난다는 것은 치료기의 치료 효과 및 안전성을 보증하기 어렵다는 것을 시사한다. 본 연구의 결과는 치료기의 허가 및 성능의 동등성에 대한 명확한 기준을 포함하는 식약처의 가이드라인 개정 및 사용 중인 치료기의 음향 출력과 기술 문서와의 일치성 확인을 포함하는 치료기의 성능에 대한 규제 기관의 사후 관리의 필요성을 제기한다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처)의 재원으로 범부처전주기의료기기연구개발사업단(과제고유번호: KD0000103G0003057)과 한국연구재단(과제고유번호: 2017R1A2B3007907)의 지원을 받아 수행된 연구임.

References

  1. M. J. Choi, S. C. Cho, D. G. Paeng, and K. I. Lee, "Extracorporeal shock wave therapy: Its acoustical aspects," J. Acoust. Soc. Kr. 29, 119-130 (2010).
  2. M. Delius, K. Draenert, Y. Al Diek, and Y. Draenert, "Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone," Ultrasound Med. Biol. 21, 1219-1225 (1995). https://doi.org/10.1016/0301-5629(95)00030-5
  3. A. Notarnicola and B. Moretti, "The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue," Muscles, Ligaments Tendons J. 2, 33-37 (2012).
  4. C. J. Wang, F. S. Wang, K. D. Yang, C. C. Huang, M. S. S. Lee, Y. S. Chan, J. W. Wang, and J. Y. Ko, "Treatment of osteonecrosis of the hip: comparison of extracorporeal shockwave with shockwave and alendronate," Arch. Orthop. Trauma Surg. 128, 901-908 (2008). https://doi.org/10.1007/s00402-007-0530-5
  5. D. Erroi, M. Sigona, T. Suarez, D. Trischitta, A. Pavan, M. C. Vulpiani, and M. Vetrano, "Conservative treatment for Insertional Achilles Tendinopathy: plateletrich plasma and focused shock waves," A Retrospective Study, Muscles, Ligaments Tendons J. 7, 98-106 (2017). https://doi.org/10.11138/mltj/2017.7.1.098
  6. S. J. Kuo, I. C. Su, C. J. Wang, and J. Y. Ko, "Extracorporeal shockwave therapy(ESWT) in the treatment of atrophic non-unions of femoral shaft fractures," Int. J. Surg. 24, 131-134 (2015). https://doi.org/10.1016/j.ijsu.2015.06.075
  7. H. Radinmehr, N. N. Ansari, S. Naghdi, G. Olyaei, and A. Tabatabaei, "Effects of one session radial extracorporeal shockwave therapy on post-stroke plantarflexor spasticity: a single-blind clinical trial," Disabil. Rehabil. 39, 483-490 (2016).
  8. W. Y. Chou, C. J. Wang, K. T. Wu, Y. J. Yang, J. H. Cheng, and S. W. Wang, "Comparative outcomes of extracorporeal shockwave therapy for shoulder tendinitis or partial tears of the rotator cuff in athletes and non-athletes: Retrospective study," Int. J. Surg. 51, 184- 190 (2018). https://doi.org/10.1016/j.ijsu.2018.01.036
  9. G. Yang, C. Luo, X. Yan, L. Cheng, and Y. Chai, "Extracorporeal shock wave treatment improves incisional wound healing in diabetic rats," Tohoku J. Exp. Med. 225, 285-292 (2011). https://doi.org/10.1620/tjem.225.285
  10. C. G. Chaussy, "The History of Shockwave Lithotripsy," in The History of Technologic Advancements in Urology, edited by S. Patel, M. Moran, S. Nakada (Springer, Available from: https://doi.org/10.1007/9783-319-61691-9_11, 2018).
  11. F. Ioppolo, M. Tattoli, L. D. Sante, C. Attanasi, T. Venditto, M. Servidio, A. Cacchio, and V. Santilli, "Extracorporeal shock-wave therapy for supraspinatus calcifying tendinitis: a randomized clinical trial comparing two different energy levels," Phys. Ther. 92, 1376-1385 (2012). https://doi.org/10.2522/ptj.20110252
  12. F. Sebastian, S. Florian, M. Patrick, G. Alexandra, P. Gert, and S. A. Manuel, "Extracorporeal shockwave therapy in calcifying tendinitis of the shoulder," Knee Surg. Sports Traumatol. Arthrosc. 19, 20852089 (2011).
  13. E. Rebuzzi, N. Coletti, S. Schiavetti, and F. Giusto, "Arthroscopy surgery versus shock wave therapy for chronic calcifying tendinitis of the shoulder," J. Orthop. Trauma. 9, 179185 (2008).
  14. A. Bechara, A. Casabe, W. D. Bonis, and P. G. Ciciclia, "Twelve-month efficacy and safety of low-intensity shockwave therapy for erectile dysfunction in patients who do not respond to phosphodiesterase type 5 inhibitors," J. Sex Med. 4, e225-e232 (2016). https://doi.org/10.1016/j.esxm.2016.06.001
  15. E. Chung and R. Cartmill, "Evaluation of clinical efficacy, safety and patient satisfaction rate after lowintensity extracorporeal shockwave therapy for the treatment of male erectile dysfunction: an Australian first open-label single-arm prospective clinical trial," BJU Int. 115, 4649 (2015).
  16. C. J. Wang, J. H. Cheng, Y. R. Kuo, W. Schaden, and R. Mittermayr, "Extracorporeal shockwave therapy in diabetic foot ulcers," Int. J. Surg. 24, 207-209 (2015). https://doi.org/10.1016/j.ijsu.2015.06.024
  17. P. Yuan, D. Ma, Y. Zhang, X. Gao, Z. Liu, R. Li, T. Wang, S. Wang, J. Liu, and X. Liu, "Efficacy of low- intensity extracorporeal shock wave therapy for the treatment of chronic prostatitis/chronic pelvic pain syndrome: A systematic review and meta-analysis," Neurourol. Urodyn. 38, 1457-1466 (2019). https://doi.org/10.1002/nau.24017
  18. R. Zimmermann and L. Hoeltl, "Extracorporeal shockwave therapy for treating chronic pelvic pain syndrome: a feasilility study and the first clinical results," BJU Int. 102, 976-980 (2008). https://doi.org/10.1111/j.1464-410X.2008.07742.x
  19. FDA Guidance, "Guidance for the content of premarket notifications (510(k)s) for extracorporeal shock wave lithotripters indicated for the fragmentation of kidney and ureteral calculi," 2008.
  20. C. Chaussy, E. Schmiedt, D. Jocham, V. Walther, W. Brendel, B. Forssmann, and W. Hepp, Extracorporeal Shock Wave Lithotripsy: New Aspects in the Treatment of Kidney Stone Disease (Karger, Basel, 1982), pp. 1-6.
  21. M. J. Choi, J. Y. Lee, and E. J. Park, "First report on the persist time of the free radical produced by shock wave pulses employed in clinical ESWL," Ultrason. Sonochem. 83, 105927 (2022). https://doi.org/10.1016/j.ultsonch.2022.105927
  22. A. J. Coleman, M. J. Choi, J. E. Saunders, and T. G. Leighton, "Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter," Ultrasound Med. Biol. 18, 267-281 (1992). https://doi.org/10.1016/0301-5629(92)90096-S
  23. S. R. Park , K. W. Jang , S-H. Park , H. S. Cho , C. Z. Jin, M. J. Choi, S. L. Yu, and B. H. Min, "The effect of sonication on simulated osteoarthritis. Part I: effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium," Ultrasound Med. Biol. 31, 1551-1558 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.07.002
  24. I. S. Song, B. I. Choi, J. K. Han, H. K. Lee, Y. H. Park, Y. B. Yoon, C. W. Kim, and M. C. Han, "Piezoelectric lithotripsy of gallbladder stones: fragmentation rate vs stone size, number and character," Korean J. Radio. 27, 813-816 (1991). https://doi.org/10.3348/jkrs.1991.27.6.813
  25. S. McClure and C. Dorfmuller, "Extracorporeal shock wave therapy: theory and equipment," Clin. Tech. Equine Pract. 2, 348-357 (2003). https://doi.org/10.1053/j.ctep.2004.04.008
  26. M. J. Choi, S. J. Jeon, O. B. Kwon, M. Y. Lee, J. S. Cho, H. S. Kim, and E. H. Maeng, "Inspection on the acoustic output of the focused extracorporeal focused shock wave therapeutic devices approved by MFDS" (in Korean), J. Acoust. Soc. Kr. 39, 303-317 (2020).
  27. M. Adatto, K. Russe-Wilfingseder, and K. Raegener, "Shock wave theraby in practice," in Multidisciplinary Medical Applications, edited by H. Lohrer and L. Gerdesmeyer, (LEVEL 10 books, Available from: www.level-books.com, 2014).
  28. Ministry of Food and Drug Safety, "Guidelines for preparing technical documents for in extracorporeal shock wave therapy," Guide-0580-01, 2015.
  29. IEC 60601-2-36, Medical Electrical Equipment - Part2-36: Particular Requirements for the Basic Safety and Essential Performance of Equipment for Extracorporeally Induced Lithotripsy; Edition 2.0, 2014.
  30. IEC 61846, Ultrasonics - PressurePpulse Lithotripters - Characteristics of Fields; First Edition, 1998.
  31. Ministry of Food and Drug Safety, "Safety and performance evaluation test method guide for in extracorporeal shock wave lithotripte," Guide-0784-01, 2017.
  32. C. Perez, H. Chen, T. J. Matula, M. Karzova, and V. A. Khokhlova, "Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device," J. Acoust. Soc. Am. 134, 1663-1674 (2013). https://doi.org/10.1121/1.4812885
  33. IEC 63045, Ultrasonics - Non Focusing Short Pressure Pulse Sources Including Ballistic Pressure Pulse Sources - Characteristics of Fields; First Edition, 2020.
  34. China Food and Drug Administration, Extracorporeal Pressure Wave Therapy Devices by Compressed Air, YY0950, 2015.
  35. M. J. Choi and O. Kwon, "Temporal and spectral characteristics of the impulsive waves produced by a clinical ballistic shock wave therapy device," Ultrasonics, 110, 106238 (2021). https://doi.org/10.1016/j.ultras.2020.106238
  36. M. J. Choi, G. Kang, and J. S. Huh, "Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device," BMEL, 7, 143-151 (2017).
  37. S. Y. Cho, O. B. Kwon, S. C. Kim, H. Song, K. Kim, and M. J. Choi, "Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology," Investig Clin. Urol. 63, 385 (2022). https://doi.org/10.4111/icu.20220059
  38. M. T. Do, T. H. Ly, M. J. Choi, and S. Y. Cho, "Clinical application of the therapeutic ultrasound in urologic disease: Part II of the therapeutic ultrasound in urology," Investig Clin. Urol. 63, 394-406 (2021).
  39. M. K. Jeong and M. J. Choi, "A novel approach for the detection of every significant collapsing bubble in passive cavitation imaging," IEEE Trans on. Ultrason. Ferroelect. Freq. Control. 69, 1288-1300 (2022). https://doi.org/10.1109/TUFFC.2022.3151882
  40. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. In the 4th ed. (John Wiley & Sons, Hoboken, New Jersey, 2000), pp. 113-143.
  41. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic press, London, 2013), pp. 73-124.