DOI QR코드

DOI QR Code

On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space

  • Received : 2021.03.21
  • Accepted : 2021.12.10
  • Published : 2022.09.30

Abstract

In this study, we define tubular surfaces in Pseudo Galilean 3-space as type-1 or type-2. Using the X(s, t) position vectors of the surfaces and G(s, t) Gaussian transformations, we obtain equations for the two types of tubular surfaces that satisfy the conditions ∆X(s, t) = 0, ∆X(s, t) = AX(s, t), ∆X(s, t) = λX(s, t), ∆X(s, t) = ∆G(s, t), ∆G(s, t) = 0, ∆G(s, t) = AG(s, t) and ∆G(s, t) = λG(s, t).

Keywords

Acknowledgement

The authors are indebted to the referees for helpful suggestions and insights concerning the presentation of this paper.

References

  1. M. Akyigit and A. Z. Azak, Admissible Mannheim Curves in Pseudo Galilean Space $G_1^3$, Afr. Diaspora J. Math., 10(2)(2010), 58-65.
  2. B. Y. Chen, A report on submanifold of finite type, Soochow J. Math., 22(1996), 117-337
  3. B. Divjak, Curves in Pseudo Galilean Geometry, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 41(1998), 117-128.
  4. M. K. Karacan and Y. Tuncer, Tubular Surfaces of Weingarten Types in Galilean and Pseudo Galilean Spaces, Bull. Math. Anal. Appl., 5(2)(2013), 87-100.
  5. E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage Algebra Geom., 38(1997), 261-288.
  6. H. B. Oztekin, Weakened Bertrand curves in The Galilean Space $G_1^3$, J. Adv. Math. Stud., 2(2)(2009), 69-76.
  7. H. Oztekin, H. Bozok, Position vectors of admissible curves in 3-dimensional Pseudo Galilean space G1 3, Int. Electron. J. Geom., 8(1)(2015), 21-32. https://doi.org/10.36890/iejg.592274
  8. Y. Tuncer and M. K. Karacan, Canal Surfaces in Pseudo-Galilean 3-Spaces, Kyungpook Math. J. 60(2)(2020), 361-373. https://doi.org/10.5666/KMJ.2020.60.2.361
  9. D. W. Yoon, On the Gauss Map of Tubular Surfaces in Galilean 3-space, Int. J. Math. Anal., 8(45)(2014), 2229-2238. https://doi.org/10.12988/ijma.2014.4365
  10. D. W. Yoon, Surfaces of revolution in the three dimensional Pseudo Galilean space, Glas. Mat. Ser. III, 48(2013), 415-428. https://doi.org/10.3336/gm.48.2.13