DOI QR코드

DOI QR Code

Deoxypodophyllotoxin Induces ROS-Mediated Apoptosis by Modulating the PI3K/AKT and p38 MAPK-Dependent Signaling in Oral Squamous Cell Carcinoma

  • Seo, Ji-Hye (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Yoon, Goo (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Park, Seryoung (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Shim, Jung-Hyun (Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University) ;
  • Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Jeon, Young-Joo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2022.07.06
  • Accepted : 2022.08.22
  • Published : 2022.09.28

Abstract

Deoxypodophyllotoxin (DPT), a naturally occurring flavonolignan, possesses several pharmacological properties, including anticancer property. However, the mechanisms underlying DPT mode of action in oral squamous cell carcinoma (OSCC) remain unknown. This study aimed to investigate the anticancer effects of DPT on OSCC and the underlying mechanisms. Results of the MTT assay revealed that DPT significantly reduced the cell viability in a time- and dose-dependent manner. Flow cytometry analysis revealed that DPT induces apoptosis in OSCC cells in a dose-dependent manner. Moreover, DPT enhanced the production of mitochondrial reactive oxygen species (ROS) in OSCC cells. Mechanistically, DPT induced apoptosis in OSCC cells by suppressing the PI3K/AKT signaling pathway while activating the p38 MAPK signaling to regulate the expression of apoptotic proteins. Treatment with SC79, an AKT activator, reversed the effects of DPT on AKT signaling in OSCC cells. Taken together, these results provide the basis for the use of DPT in combination with conventional chemotherapy for the treatment of oral cancer.

Keywords

Acknowledgement

This research was supported by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM1312211), the National Research Council of Science and Technology (NST) grant (CAP-18-02-KRIBB), and the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A1A01048981).

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. 2005. Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. https://doi.org/10.3322/canjclin.55.2.74
  2. Herskovic A, Martz K, al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, et al. 1992. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N. Engl. J. Med. 326: 1593-1598. https://doi.org/10.1056/NEJM199206113262403
  3. Warnakulasuriya S. 2009. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45: 309-316. https://doi.org/10.1016/j.oraloncology.2008.06.002
  4. Loike JD, Brewer CF, Sternlicht H, Gensler WJ, Horwitz SB. 1978. Structure-activity study of the inhibition of microtubule assembly in vitro by podophyllotoxin and its congeners. Cancer Res. 38: 2688-2693.
  5. Zilla MK, Nayak D, Amin H, Nalli Y, Rah B, Chakraborty S, et al. 2014. 4'-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells. Chem. Biol. Interact. 224: 100-107. https://doi.org/10.1016/j.cbi.2014.09.022
  6. Shin SY, Yong Y, Kim CG, Lee YH, Lim Y. 2010. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett. 287: 231-239. https://doi.org/10.1016/j.canlet.2009.06.019
  7. Benzina S, Harquail J, Jean S, Beauregard AP, Colquhoun CD, Carroll M, et al. 2015. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer Agents Med. Chem. 15: 79-88.
  8. Hu S, Zhou Q, Wu WR, Duan YX, Gao ZY, Li YW, et al. 2016. Anticancer effect of deoxypodophyllotoxin induces apoptosis of human prostate cancer cells. Oncol. Lett. 12: 2918-2923. https://doi.org/10.3892/ol.2016.4943
  9. Wang YR, Xu Y, Jiang ZZ, Guerram M, Wang B, Zhu X, et al. 2015. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in SGC-7901 cells and inhibits tumor growth in vivo. Molecules 20: 1661-1675. https://doi.org/10.3390/molecules20011661
  10. Wang Y, Wang B, Guerram M, Sun L, Shi W, Tian C, et al. 2015. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio. Oncotarget. 6: 29497-29512. https://doi.org/10.18632/oncotarget.4985
  11. Kim SH, Son KM, Kim KY, Yu SN, Park SG, Kim YW, et al. 2017. Deoxypodophyllotoxin induces cytoprotective autophagy against apoptosis via inhibition of PI3K/AKT/mTOR pathway in osteosarcoma U2OS cells. Pharmacol. Rep. 69: 878-884. https://doi.org/10.1016/j.pharep.2017.04.007
  12. Jung CH, Kim H, Ahn J, Jung SK, Um MY, Son KH, et al. 2013. Anthricin isolated from Anthriscus sylvestris (L.) Hoffm. inhibits the growth of breast cancer cells by inhibiting Akt/mTOR signaling, and its apoptotic effects are enhanced by autophagy inhibition. Evid Based Complement. Alternat. Med. 2013: 385219.
  13. Wang W, Gao W, Zhang L, Zhang D, Zhao Z, Bao Y. 2019. Deoxypodophyllotoxin inhibits cell viability and invasion by blocking the PI3K/Akt signaling pathway in human glioblastoma cells. Oncol. Rep. 41: 2453-2463.
  14. Yeh HT, Tsai YS, Chen MS, Li YZ, Lin WC, Lee YR, et al. 2019. Flavopereirine induces cell cycle arrest and apoptosis via the AKT/p38 MAPK/ERK1/2 signaling pathway in human breast cancer cells. Eur. J. Pharmacol. 863: 172658. https://doi.org/10.1016/j.ejphar.2019.172658
  15. Das U, Manna K, Adhikary A, Mishra S, Saha KD, Sharma RD, et al. 2019. Ferulic acid enhances the radiation sensitivity of lung and liver carcinoma cells by collapsing redox homeostasis: mechanistic involvement of Akt/p38 MAPK signalling pathway. Free Radic. Res. 53: 944-967. https://doi.org/10.1080/10715762.2019.1655559
  16. Yan Y, Jin X, Sun H, Pang S, Kong X, Bu J, et al. 2021. MiR-139-5p Targetedly regulates YAF2 and mediates the AKT/P38 MAPK signaling pathway to alleviate the metastasis of non-small cell lung cancer cells and their resistance against cisplatin. Cancer Manag. Res. 13: 3639-3650. https://doi.org/10.2147/CMAR.S254671
  17. Wang L, Yao L, Li X, Chen J, Lou C, Wang Y. 2019. Stephanthraniline A suppresses proliferation of HCT116 human colon cancer cells through induction of caspase-dependent apoptosis, dysregulation of mitochondrial function, cell cycle arrest and regulation of Akt/p38 signaling pathways. J. Toxicol. Sci. 44: 523-533. https://doi.org/10.2131/jts.44.523
  18. Ou YW, Zhao ZT, Wu CY, Xu BN, Song YM, Zhan QM. 2014. Mig-2 attenuates cisplatin-induced apoptosis of human glioma cells in vitro through AKT/JNK and AKT/p38 signaling pathways. Acta Pharmacol. Sin. 35: 1199-1206. https://doi.org/10.1038/aps.2014.60
  19. Zeng S, Tao Y, Huang J, Zhang S, Shen L, Yang H, et al. 2013. WD40 repeat-containing 62 overexpression as a novel indicator of poor prognosis for human gastric cancer. Eur. J. Cancer 49: 3752-3762. https://doi.org/10.1016/j.ejca.2013.07.015
  20. Raman M, Chen W, Cobb MH. 2007. Differential regulation and properties of MAPKs. Oncogene. 26: 3100-3112. https://doi.org/10.1038/sj.onc.1210392
  21. Robinson MJ, Cobb MH. 1997. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9: 180-186. https://doi.org/10.1016/S0955-0674(97)80061-0
  22. Chan-Hui PY, Weaver R. 1998. Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades. Biochem. J. 336 (Pt 3): 599-609. https://doi.org/10.1042/bj3360599
  23. Liu ZM, Chen GG, Vlantis AC, Tse GM, Shum CK, van Hasselt CA. 2007. Calcium-mediated activation of PI3K and p53 leads to apoptosis in thyroid carcinoma cells. Cell Mol. Life Sci. 64: 1428-1436. https://doi.org/10.1007/s00018-007-7107-x
  24. Xu N, Lao Y, Zhang Y, Gillespie DA. 2012. Akt: a double-edged sword in cell proliferation and genome stability. J. Oncol. 2012: 951724. https://doi.org/10.1155/2012/951724
  25. Aikin R, Maysinger D, Rosenberg L. 2004. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 145: 4522-4531. https://doi.org/10.1210/en.2004-0488
  26. Liao Y, Hung MC. 2003. Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol. Cell Biol. 23: 6836-6848. https://doi.org/10.1128/MCB.23.19.6836-6848.2003
  27. Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS. 2009. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 45: 324-334. https://doi.org/10.1016/j.oraloncology.2008.07.011
  28. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. 2011. Anti-cancer natural products isolated from chinese medicinal herbs. Chin. Med. 6: 27. https://doi.org/10.1186/1749-8546-6-27
  29. Gniadecki R, Thorn T, Vicanova J, Petersen A, Wulf HC. 2000. Role of mitochondria in ultraviolet-induced oxidative stress. J. Cell Biochem. 80: 216-222. https://doi.org/10.1002/1097-4644(20010201)80:2<216::AID-JCB100>3.0.CO;2-H
  30. Su YT, Chang HL, Shyue SK, Hsu SL. 2005. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem. Pharmacol. 70: 229-241. https://doi.org/10.1016/j.bcp.2005.04.026
  31. Coulie J, Boon L, Vikkula M. 2022. Molecular pathways and possible therapies for head and neck vascular anomalies. J. Oral. Pathol. Med. doi: 10.1111/jop.13318.
  32. Lu Y, Lin J, Duan M, Rui Y, Zheng H, Zhu L, et al. 2021. Anlotinib suppresses oral squamous cell carcinoma growth and metastasis by targeting the RAS protein to inhibit the PI3K/Akt signalling pathway. Anal. Cell Pathol (Amst). 2021: 5228713.
  33. Jeon YJ, Cho JH, Lee SY, Choi YH, Park H, Jung S, et al. 2016. Esculetin induces apoptosis through EGFR/PI3K/Akt signaling pathway and nucleophosmin relocalization. J. Cell Biochem. 117: 1210-1221. https://doi.org/10.1002/jcb.25404
  34. Engelman JA, Luo J, Cantley LC. 2006. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7: 606-619. https://doi.org/10.1038/nrg1879
  35. Dey S, Singh AK, Singh AK, Rawat K, Banerjee J, Agnihotri V, et al. 2022. Critical pathways of oral squamous cell carcinoma: molecular biomarker and therapeutic intervention. Med. Oncol. 39: 30. https://doi.org/10.1007/s12032-021-01633-4
  36. Boldt S, Weidle UH, Kolch W. 2002. The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23: 1831-1838. https://doi.org/10.1093/carcin/23.11.1831
  37. Dhillon AS, Hagan S, Rath O, Kolch W. 2007. MAP kinase signalling pathways in cancer. Oncogene 26: 3279-3290. https://doi.org/10.1038/sj.onc.1210421
  38. Chang L, Karin M. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37-40. https://doi.org/10.1038/35065000
  39. Boutros T, Chevet E, Metrakos P. 2008. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol. Rev. 60: 261-310. https://doi.org/10.1124/pr.107.00106
  40. Murray AW. 2004. Recycling the cell cycle: cyclins revisited. Cell. 116: 221-234. https://doi.org/10.1016/S0092-8674(03)01080-8
  41. Akgul C. 2009. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol. Life Sci. 66: 1326-1336. https://doi.org/10.1007/s00018-008-8637-6
  42. Okaro AC, Deery AR, Hutchins RR, Davidson BR. 2001. The expression of antiapoptotic proteins Bcl-2, Bcl-X(L), and Mcl-1 in benign, dysplastic, and malignant biliary epithelium. J. Clin. Pathol. 54: 927-932. https://doi.org/10.1136/jcp.54.12.927
  43. Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al-Daccak R, et al. 2008. Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol. Cancer Res. 6: 42-52. https://doi.org/10.1158/1541-7786.MCR-07-0080
  44. Andersson Y, Juell S, Fodstad O. 2004. Downregulation of the antiapoptotic MCL-1 protein and apoptosis in MA-11 breast cancer cells induced by an anti-epidermal growth factor receptor-Pseudomonas exotoxin a immunotoxin. Int. J. Cancer 112: 475-483. https://doi.org/10.1002/ijc.20371