DOI QR코드

DOI QR Code

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites

복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교

  • Kwon, Dong-Jun (Department of Materials Science and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Park, Joung-Man (Department of Materials Science and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 권동준 (경상국립대학교 나노신소재융합공학부, 그린에너지융합연구소) ;
  • 김종현 (한국화학연구원 정밀.바이오화학연구본부 정밀화학소재연구단, 정밀화학융합기술연구센터) ;
  • 박종만 (경상국립대학교 나노신소재융합공학부, 그린에너지융합연구소)
  • Received : 2022.06.10
  • Accepted : 2022.08.04
  • Published : 2022.09.30

Abstract

To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

섬유와 기지 간 계면 특성을 분석하기 위해 일반적으로 접촉각을 활용하여 계산된 접착일을 활용한다. 접촉각 측정 방식으로 동적접촉각과 정적접촉각이 있으며, 본 논문에서는 보다 정확도가 높은 접촉각 측정 방법이 무엇인지 모색하였다. 각각 4가지 종류의 에폭시 수지와 유리섬유를 사용하였고, 유리섬유와 에폭시의 표면 에너지 결과를 기반으로 접착일, Wa을 계산하여 계면강도를 예측하였다. 접착일과 계면 전단강도는 이론상 비례관계이며, 이를 확인하기 위해 조성이 다른 에폭시와 유리섬유 간의 계면강도를 마이크로드롭렛 시험법을 이용하여 측정하였다. 정적접촉각 결과의 경우 접착일과 계면 전단강도 사이에는 일치하지 않는 경향을 보였다. 이는, 동적 접촉각 평가 방법은 정적접촉각에 비해, 드롭 크기에 따른 최소 표면적을 이루는 에러와 미니스커서에서 접선 측정에 따른 에러를 최소화할 수 있다는 점이다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) was funded by the Ministry of Education (No. 2020R1A6A1A03038697 and NRF-2021M3H4A3A01043762).

References

  1. J. Fleisher, R. Teti, G. Lanza, P Mativenga, H.C. Mohring, A. Caggiano. CIRP Ann. - Manuf. Technol. 67, 603 (2018). https://doi.org/10.1016/j.cirp.2018.05.005
  2. C.N.C. Lam, R. Wu, D. Li, M.L. Hair, A.W. Neumann. Adv. Colloid Interface Sci. 96, 169 (2002). https://doi.org/10.1016/S0001-8686(01)00080-X
  3. S. Pimanpang, P.I Wang, J.J. Senkevich, G.C. Wang, T.M. Lu. Colloids Surf. A Physicochem. Eng. Asp. 278, 53 (2006). https://doi.org/10.1016/j.colsurfa.2005.11.099
  4. D. Polster, H. Graaf. Appl. Surf. Sci. 265, 88 (2013). https://doi.org/10.1016/j.apsusc.2012.10.128
  5. J. Chinnam, D. Das, R. Vajjha, J. Satti. Int. Commun. Heat Mass Transf. 62, 1 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2014.12.009
  6. K. Grundke, K. Poschel, A. Synytska, R. Frenzel, A. Drechsler, M. Nitschke, A.L. Cordeiro, P. Uhlmann, P.B. Welzel. Adv. Colloid Interface Sci. 222, 350 (2015). https://doi.org/10.1016/j.cis.2014.10.012
  7. M.A. Mahjoub, G. Monier, C.R. Goument, L. Bideux, B. Gruzza. Appl. Surf. Sci. 357, 1268 (2015). https://doi.org/10.1016/j.apsusc.2015.09.154
  8. K. Li, T. Kobayashi. Ultrason Sonochem. 28, 39 (2016). https://doi.org/10.1016/j.ultsonch.2015.06.030
  9. Q. Ronghui, L. Lin, J. Yu. Int. J. Heat Mass Transf. 88, 210 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.080
  10. Y. Yamamoto, K. Tokieda, T. Wakimoto, T. Ito, K. Katoh. Int. J. Multiph. Flow. 59, 106 (2014). https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.018
  11. C.A. Fuentes, K. Beckers, H. Pfeiffer, L.Q.N. Tran, C.D. Gillain, I. Verpoest, A.W.V. Vuure. Colloids Surf. A: Physicochem. Eng. Asp. 455, 164 (2014). https://doi.org/10.1016/j.colsurfa.2014.04.054
  12. C. Zhang, W. Zhou, Q. Wang, H. Wang, Y. Tang, K.S. Hui. Appl. Surf. Sci. 276, 377 (2013). https://doi.org/10.1016/j.apsusc.2013.03.101
  13. S.D. Hong, M.Y. Ha, S. Balachandar. J. Colloid Interface Sci. 339, 187 (2009). https://doi.org/10.1016/j.jcis.2009.07.048
  14. A.A. Shareef, P. Neogi, B. Bai. Chem. Eng. Sci. 99, 113 (2013). https://doi.org/10.1016/j.ces.2013.05.052
  15. F. Huang, Q. Wei, X. Wang, W. Xu. Polym. Test. 25, 22 (2006).
  16. J.M. Park, D.S. Kim, S.R. Kim. Compos. Sci. Technol. 63, 40 (2003).
  17. J.M. Park, Z.J. Wang, D.J. Kwon, G.Y. Gu, W.I. Lee, J.K. Park, K.L. DeVreis. Compos. B: Eng. 43, 1171 (2012). https://doi.org/10.1016/j.compositesb.2011.08.035
  18. X. Sun, Y. Hasegawam, H. Kohno, Z. Jiao, K. Hayakawa, K Okita, N. Shikazono. Mater. Charact. 96, 100 (2014). https://doi.org/10.1016/j.matchar.2014.07.020
  19. A. Maestro, E. Guzman, F. Ortega, R.G. Rubio. Curr. Opin. Colloid Interface Sci. 19, 355 (2014). https://doi.org/10.1016/j.cocis.2014.04.008
  20. D.J. Kwon, Z.J. Wang, J.Y. Chou, P.S. Shin, K.L. DeVries, J.M Park. Compos. Part A Appl. Sci. Manuf. 72, 160 (2015). https://doi.org/10.1016/j.compositesa.2015.02.007
  21. P.S. Shin, J.H. Kim, H.S. Park, Y.M. Baek, D.J. Kwon, K.L. DeVries, J.M. Park. J Adhes. 97, 438 (2021). https://doi.org/10.1080/00218464.2019.1669449
  22. Q. Wu, Q. Wan, X. Yang, F. Wang, J. Zhu. Appl. Surf. Sci. 547, 149162 (2021). https://doi.org/10.1016/j.apsusc.2021.149162
  23. J.H. Kim, D.J. Kwon, K.L. DeVries, J.M. Park. Compos. Sci. Technol. 225, 109495 (2022). https://doi.org/10.1016/j.compscitech.2022.109495