DOI QR코드

DOI QR Code

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes

가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용

  • Jeong, Seo Gyeong (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Ha, Seongmin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
  • 정서경 (충남대학교 응용화학공학과) ;
  • 하성민 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2022.09.07
  • Accepted : 2022.09.27
  • Published : 2022.10.10

Abstract

Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.

온실가스의 회수 및 분리를 위한 다공성 물질로 활성탄소와 탄소분자체가 주목을 받아왔다. 균일한 기공을 가지는 탄소분자체는 특정 가스를 선택적으로 흡착할 수 있기 때문에 가스의 포집 및 분리에 사용되고 있다. 탄소분자체의 성능은 세공의 크기 및 균일성에 따라 좌우되는데, 이러한 탄소분자체의 미세 기공 제어를 위하여 표면을 일정한 두께로 코팅할 수 있는 화학기상증착법이 널리 사용 되고 있다. 이 화학기상증착법은 탄소분자체 제조 시 기공의 크기를 제어하는데 사용될 수 있으나, 그 실험 변수가 다양하기 때문에 이에 대한 최적화가 필요하다. 따라서, 본 총설에서는 가스 흡착 및 분리공정용 활성탄소와 탄소분자체를 제조하기 위하여 여러 가지 활성화 공정, 화학기상증착법과 표면처리 등에 의한 기공 제어 기술들을 중심으로 다루고자 한다.

Keywords

Acknowledgement

본 연구는 한국산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. E. Gil, S-K. Lee, and M. Rim, The impact of greenhouse gas abatement policy on manufacturing industries in south korea, The Korean Journal of Economic Studies, 69, 55-95 (2021). https://doi.org/10.22841/KJES.2021.69.3.002
  2. H. Kim, J. Lee, S. Lee, J. Han, and I. Lee, Operating optimization and economic evaluation of multicomponent gas separation process using pressure swing adsorption and membrane process, Korean Chem. Eng. Res., 53, 31-38 (2015). https://doi.org/10.9713/kcer.2015.53.1.31
  3. C. G. De Salazar, A. Sepulveda-Escribano and F. Rodriguez-Reinoso, Preparation of carbon molecular sieves by pyrolytic carbon deposition, Adsorption, 11, 663-667 (2005). https://doi.org/10.1007/s10450-005-6003-7
  4. Z. Mousavi and H. R. Bozorgzadeh, Preparation of carbon molecular sieves from pistachio shell and walnut shell for kinetic separation of carbon monoxide, hydrogen and methane, Iran. J. Chem. Chem. Eng., 36, 71-80 (2017).
  5. U. Morali, H. Demiral, and S. Sensoz, Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method, Powder Technol., 355, 716-726 (2019). https://doi.org/10.1016/j.powtec.2019.07.101
  6. Y. Gogotsi, C. Portet, S. Osswald, J. M. Simmons, T. Yildirim, G. Laudisio, and J. E. Fischer, Importance of pore size in high-pressure hydrogen storage by porous carbons, Int. J. Hydrogen Energy, 34, 6314-6319 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.073
  7. A. I. Shirley and A. I. LaCava, PSA performance of densely packed adsorbent beds, AIChE Journal, 41, 1389-1394 (1995). https://doi.org/10.1002/aic.690410605
  8. Y. J. Kim, J. G. Lee, J. Y. Lee, and Y. T. Kang, Experimental study on PSA process for high purity CH4 recovery from biogas, Korean J. Air Cond. Refrig. Eng., 23, 281-286 (2011). https://doi.org/10.6110/KJACR.2011.23.4.281
  9. S-J. Lee, H. Ahn, J-G. Jee, M-B. Kim, J-H. Moon, Y-S. Bae, and C-H. Lee, Comparison of PSA and VSA processes for air separation, Clean Technol., 6, 101-109 (2004).
  10. S. Cho, Current status and prospects of PSA gas separation technology, Chemical Industry And Technology, 15, 195 (1997).
  11. M. R. Rahimpour, M. Ghaemi, S. M. Jokar, O. Dehghani, M. Jafari, S. Amiri, and S. Raeissi, The enhancement of hydrogen recovery in PSA unit of domestic petrochemical plant, Chem. Eng. J., 226, 444-459 (2013). https://doi.org/10.1016/j.cej.2013.04.029
  12. G. Jee, S. J. Lee, H. M. Moon, S. H. Lee, and C. H. Lee, Development of O2 Purifier by Pressure Swing Adsorption Process, KIGAS, 8, 37-47 (2004).
  13. J. K. Jeon, Y. K. Park, and K. Chue, Study of PSA process for carbon dioxide recovery over zeolite adsorbent: Effect of rinse rate on process performance, J. Korean Soc. Atmos. Environ., 20, 99-110 (2004).
  14. A. A. Abd, S. Z. Naji, A. S. Hashim, and M. R. Othman, Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review, J. Environ. Chem. Eng, 8, 104142 (2020). https://doi.org/10.1016/j.jece.2020.104142
  15. A. A. Ahmad, M. Al-Raggad, and N. Shareef, Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: A review, Carbon Lett., 31, 957-971 (2021). https://doi.org/10.1007/s42823-020-00208-z
  16. L. Wang, Y. Yao, Z. Zhang, L. Sun, W. Lu, W. Chen, and H. Chen, Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation, Chem. Eng. J., 251, 348-354 (2014). https://doi.org/10.1016/j.cej.2014.04.088
  17. R. C. Bansal, J. B. Donnet, and H. F. Stoeckli, Active Carbon, Marcel Dekker, New York (1988).
  18. A. Swiatkowski, Industrial carbon adsorbents, Stud. Surf. Sci. Catal., 120, 69-92 (2008). https://doi.org/10.1016/S0167-2991(99)80549-7
  19. W. Thongpat, J. Taweekun, and K. Maliwan, Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH, Carbon Lett., 31, 1079-1088 (2021). https://doi.org/10.1007/s42823-020-00224-z
  20. J. Wang, Y. K. Park, and Y. M. Jo, Sequential improvement of activated carbon fiber properties for enhanced removal efficiency of indoor CO2, J. Ind. Eng. Chem., 89, 400-408 (2020). https://doi.org/10.1016/j.jiec.2020.06.011
  21. A. Syakdani, Y. Bow, Rusdianasari, and M. Taufik, Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process using Pressure Swing Adsorption (PSA) Method. J. Phys.: Conf. Ser., 1167, 012055 (2019). https://doi.org/10.1088/1742-6596/1167/1/012055
  22. T. Orfanoudaki, G. Skodras, I. Dolios, and G. Sakellaropoulos, Production of carbon molecular sieves by plasma treated activated carbon fibers, Fuel, 82, 2045-2049 (2003). https://doi.org/10.1016/S0016-2361(03)00172-8
  23. B. Lee, Preparation and Characterization of Carbon Molecular Sieve for Separating Landfill gases, PhD Dissertation, Paichai University, Daejeon, Korea (2001).
  24. W. S. Hong, Thin film vacuum process technology via chemical vapor deposition methods, Vacuum Magazine, 1, 9-13 (2014). https://doi.org/10.5757/vacmag.1.3.9
  25. M. B. Tahir, M. Rafique, M. S. Rafique, T. Nawaz, M. Rizwan, and M. Tanveer, Nanotechnology and Photocatalysis for Environmental Applications, M. B. Tahir, M. Rafique, M. S. Rafique (eds.), 119-138, Elsevier, UK (2020).
  26. H. Demiral and I. Demiral, Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition, Adv. Powder Technol., 29, 3033-3039 (2018). https://doi.org/10.1016/j.apt.2018.07.015
  27. P. J. M. Carrott, I. P. P. Cansado, and M. M. L. R. Carrott, Carbon molecular sieves from PET for separations involving CH4, CO2, O2 and N2, Appl. Surf. Sci., 252, 5948-5952 (2005). https://doi.org/10.1016/j.apsusc.2005.11.014
  28. S. H. Moon and J. W. Shim, Molecular sieve properties for CH4/CO2 of activated carbon fibers prepared by benzene deposition, J. Kor. Soc. Environ. Eng., 27, 614-619 (2005).
  29. M. J. Kim, K. H. Kim, Y. Kim, B. Yoo, and Y. S. Lee, Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts, Carbon Lett., 30, 675-682 (2020). https://doi.org/10.1007/s42823-020-00140-2
  30. X. Qi, C. Qin, W. Zhong, C. Au, X. Ye, and Y. Du, Large-scale synthesis of carbon nanomaterials by catalytic chemical vapor deposition: a review of the effects of synthesis parameters and magnetic properties, Materials, 3, 4142-4174 (2010). https://doi.org/10.3390/ma3084142
  31. Y. Xu, X. Chen, D. Wu, Y. Luo, X. Liu, Q. Qian, L. Xiao, and Q. Chen, Carbon molecular sieves from soybean straw-based activated carbon for CO2/CH4 separation, Carbon Lett., 25, 68-77 (2018). https://doi.org/10.5714/CL.2018.25.068
  32. D. Adinata, W. M. A. W. Daud, and M. K. Aroua, Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation, Fuel Process Technol., 88, 599-605 (2007). https://doi.org/10.1016/j.fuproc.2007.01.009
  33. M. Ahmad, W. W. Daud, and M. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Coll. Surf. A: Physicoche. Eng. Asp., 312, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.040
  34. J. Zhang, S. Qu, L. Li, P. Wang, X. Li, Y. Che, and X. Li, Preparation of carbon molecular sieves used for CH4/N2 separation, J. Chem. Eng. Data, 23, 1737-1744 (2018).
  35. S. J. Kang, G. J. Kim, M-S. Kim, B-J. Kim, S. Kim, J-S. Roh, D-H. Riu, S-J. Park, M-K. Seo, Y. Shul, K. H. An, K. S. Yang, S. K. Ryu, G. W. Lee, Y-S. Lee, J-M. Lee, C-H. Lee, S. Lim, Y-S. Lim, D-H. Jeong, K. Y. Cho, D. Cho, S. H. Chi, and I-P. Hong, Application Handbook of Carbon Materials, 1, 613, Daeyeongsa, Seoul, Korea (2008).
  36. C. Y. Yang, C. L. Kao and P. Y. Hung, Preparation of activated carbon from waste cation exchange resin and its application in wastewater treatment, Carbon Lett., 32, 461-474 (2022). https://doi.org/10.1007/s42823-021-00275-w
  37. S. Kwon, Y. You, H. Lim, J. Lee, T.-S. Chang, Y. Kim, H. Lee, and B.-S. Kim, Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon, J. Ind. Eng. Chem., 83, 289-296 (2020). https://doi.org/10.1016/j.jiec.2019.11.041
  38. S. E. Moradi, S. Amirmahmoodi, and M. J. Baniamerian, Hydrogen adsorption in metal-doped highly ordered mesoporous carbon molecular sieve, J. Alloys Compd., 498, 168-171 (2010). https://doi.org/10.1016/j.jallcom.2010.03.144
  39. S-J. Son, J-S. Choi, K-Y. Choo, S-D. Song, S. Vijayalakshmi, and T-H. Kim, Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell, Korean J. Chem. Eng., 22, 291-297 (2005). https://doi.org/10.1007/BF02701500
  40. M. Hemmat, A. Rahbar-Kelishami, and M. H. Vakili, Preparation of carbon molecular sieves and its impregnation with Co and Ni for CO2/N2 separation, Int. J. Environ. Sci. Technol., 15, 2213-2228 (2018). https://doi.org/10.1007/s13762-017-1526-5
  41. Z. Y. Yang, D. C. Wang, Z. Y. Meng, and Y. Y. Li, Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve, Sep. Purif. Technol., 218, 130-137 (2019). https://doi.org/10.1016/j.seppur.2019.02.048
  42. S. Cho, H. R. Yu, K. D. Kim, K. B. Yi, and Y. S. Lee, Surface characteristics and carbon dioxide capture characteristics of oxyfluorinated carbon molecular sieves, Chem. Eng. J., 211, 89-96 (2012). https://doi.org/10.1016/j.cej.2012.09.047
  43. Y. Kawabuchi, S. Kawano, and I. Mochida, Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene, Carbon, 34, 711-717 (1996). https://doi.org/10.1016/0008-6223(95)00173-5
  44. T. Horikawa, J. i. Hayashi, and K. Muroyama, Preparation of molecular sieving carbon from waste resin by chemical vapor deposition, Carbon, 40, 709-714 (2002). https://doi.org/10.1016/S0008-6223(01)00157-9
  45. P. Carrott, I. Cansado, and M. R. Carrott, Carbon molecular sieves from PET for separations involving CH4, CO2, O2 and N2, Appl. Surf. Sci., 252, 5948-5952 (2006). https://doi.org/10.1016/j.apsusc.2005.11.014
  46. M. Mohammadi, G. N. Ghasem, and A. R. Mohamed, Production of carbon molecular sieves from palm shell through carbon deposition from methane, Chem. Ind. Chem. Eng. Q, 17, 525-533 (2011). https://doi.org/10.2298/CICEQ110506038M
  47. D. A. Bell, B. F. Towler, and M. Fan, Coal Gasification and Its Applications, 1st ed., William Andrew, Elsevier, UK (2011).