DOI QR코드

DOI QR Code

Experimental verification of interleaved hybrid DC/DC boost converter

  • Celik, M. Ali (Electrical and Energy Department, Vocational School, Agri Ibrahim Cecen University) ;
  • Genc, Naci (Electrical and Electronics Engineering Department, Engineering Faculty, Yalova University) ;
  • Uzmus, Hasan (Electrical and Electronics Engineering Department, Engineering Faculty, Van Yuzuncu Yil University)
  • Received : 2021.10.08
  • Accepted : 2022.05.20
  • Published : 2022.10.20

Abstract

In this study, an improved interleaved hybrid DC/DC boost converter used for high-power applications with high voltage gain was proposed. The proposed DC/DC boost converter increases low-input voltage to the desired high-output voltage with a wide duty cycle range through the hybrid structure, thereby prolonging the lifetime of the proposed converter by decreasing the current on circuit components. An extra filter for input current ripples is unnecessary. The proposed converter is less complex and has easier control than the converters used for high voltage gain. The proposed converter was operated when the duty cycle (d) was larger and smaller than 0.5. It was also analyzed theoretically, and the average- and small-signal circuits were obtained to show its stability. The proposed converter was controlled with the conventional control method by using a modern digital signal processor TMS320F28379D board. The proposed converter and its controller were operated under different conditions.

Keywords

References

  1. Sahu, P.-K., Jena, S., Babu, B.-C.: Power management and bus voltage control of a battery backup-based stand-alone PV system. Electr. Eng. 104, 97-110 (2021) https://doi.org/10.1007/s00202-021-01391-6
  2. Goudarzian, A., Khosravi, A., Raeisi, H.-A.: Modeling, design and control of a modified flyback converter with ability of righthalf- plane zero alleviation in continuous conduction mode. Eng. Sci. Technol. Int. J. 26, 101007 (2021)
  3. Shahir, F.-M., Babaei, E., Farsadi, M.: Extended topology for a boost DC-DC converter. IEEE Trans. Power Electron. 34, 2375-2385 (2018) https://doi.org/10.1109/TPEL.2018.2840683
  4. Rashid, M.-H.: Power electronics: Circuits, Devices, and Applications. Pearson Education, Noida (2009)
  5. Mohan, N., Undeland, T.-M., Robbins, W.-P.: Power Electronics: Converters, Applications, and Design. Wiley, Hoboken (2003)
  6. Jou, H.L., Wu, K.-D., Wu, J.-C., Lin, Y.-Z., Su, L.-W.: Asymmetric isolated unidirectional multi-level DC-DC power converter. Eng. Sci. Technol. Int. J. 22, 894-898 (2019)
  7. Shahir, F.-M., Babaei, E.: A new structure for non-isolated boost DC/DC converter based on voltage-lift technique. In: 8th Power Electronics & Drives: Systems and Technologies Conference (PEDSTC). (2017)
  8. Samuel, V.-J., Keerthi, G., Mahalingam, P.: Interleaved quadratic boost DC-DC converter with high voltage gain capability. Electr. Eng. 102, 651-662 (2020) https://doi.org/10.1007/s00202-019-00901-x
  9. Babaei, E., Mahmoodieh, M.-E.-S.: Calculation of output voltage ripple and design considerations of SEPIC converter. IEEE Trans. Ind. Electron. 61, 1213-1222 (2013) https://doi.org/10.1109/TIE.2013.2262748
  10. Rex, S.-R., Praba, D.-M.-S.-R.: Design of PWM with four transistor comparator for DC-DC boost converters. Microprocess. Microsyst. 72, 102844 (2020) https://doi.org/10.1016/j.micpro.2019.07.003
  11. Abdelmalek, S., Dali, A., Bettayeb, M., Bakdi, A.: A new effective robust nonlinear controller based on PSO for interleaved DC-DC boost converters for fuel cell voltage regulation. Soft Comput. 24, 17051-17064 (2020) https://doi.org/10.1007/s00500-020-04996-4
  12. Dias, J.-C., Lazzarin, T.-B.: A family of voltage-multiplier unidirectional single-phase hybrid boost PFC rectifiers. IEEE Trans. Ind. Electron. 65, 232-241 (2017) https://doi.org/10.1109/TIE.2017.2721919
  13. Genc, N., Koc, Y.: Experimental verification of an improved soft-switching cascade boost converter. Electr. Power Syst. Res. 149, 1-9 (2017) https://doi.org/10.1016/j.epsr.2017.04.015
  14. Zhao, Q., Lee, F.-C.: High-efficiency, high step-up DC-DC converters. IEEE Trans. Power Electron. 18, 65-73 (2003) https://doi.org/10.1109/TPEL.2002.807188
  15. Ling, R., Zhao, G., Huang, Q.: High step-up interleaved boost converter with low switch voltage stress. Electr. Power Syst. Res. 128, 11-18 (2015) https://doi.org/10.1016/j.epsr.2015.06.016
  16. Bellar, M.-D., Watanabe, E.-H., Mesquita, A.-C.: Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers. IEEE Trans. on Power Electron. (1992).
  17. Celebi, M.: Efficiency optimization of a conventional boost DC/ DC converter. Electr Eng (2018).
  18. Blahnik, V., Peroutka, Z., Zak, J., Komrska, T.: Traction converter with medium-frequency transformer for railway applications: direct current control of primary active rectifiers. In: IEEE 13th European Conference on Power Electronics and Applications (2009)
  19. Lange, A.-D.-B., Soeiro, T.-B., Ortmann, M.-S., Heldwein, M.-L.: Three-level single-phase bridgeless PFC rectifiers. IEEE Trans. Power Electron. 30(6), 2935-2949 (2014)
  20. Rosas-Caro, J.-C., Ramirez, J.-M., Garcia-Vite, P.-M.: Novel DC-DC multilevel boost converter. IEEE. In: Power Electron. Specialists Conference, (PESC). (2008)
  21. Rosas-Caro, J.-C., Ramirez, J.-M., Peng, F.-Z., Valderrabano, A.: A DC-DC multilevel boost converter. IET Power Electron. 3, 129 (2010) https://doi.org/10.1049/iet-pel.2008.0253
  22. Rodriguez, J., Lai, J.-S., Peng, F.-Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49, 724-728 (2002) https://doi.org/10.1109/TIE.2002.801052
  23. Prazenica, M., Frivaldsky, M., Morgos, J., Hanko, B.: Comparison of perspective dual interleaved boost converters with demagnetizing circuit. Electr. Eng. 102, 13-25 (2020) https://doi.org/10.1007/s00202-019-00844-3
  24. Kascak, S., Prazenica, M., Jarabicova, M., Paskala, M.: Interleaved DC/DC boost converter with coupled inductors. Adv Electr Electron Eng (2018). https:// doi. org/ 10. 15598/ aeee. v16i2. 2413 https://doi.org/10.15598/aeee.v16i2.2413
  25. Genc, N., Uzmus, H.: Digital control of bridgeless interleaved pfc boost converter based on predicted input current. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1682070
  26. Kim, S.-J., Do, H.-L.: Interleaved flyback converter with a lossless snubber. Int. Rev. Electr. Eng. (IREE) 9(5), 882-888 (2014) https://doi.org/10.15866/iree.v9i5.2800
  27. Azib, T., Bendali, M., Larouci, C., Hemsas, K.-E.: Fault tolerant control of interleaved buck converter for automotive application. Int. Rev. Electr. Eng. (IREE) 10(3), 336-343 (2015) https://doi.org/10.15866/iree.v10i3.5472
  28. Tseng, K.-C., Chen, J.-Z., Lin, J.-T., Huang, C.-C., Yen, T.-H.: High step-up interleaved forward-flyback boost converter with three-winding coupled inductors. IEEE Trans. Power Electron. 30, 4696-4703 (2014)
  29. Celik, E., Ozturk, N.: First application of symbiotic organisms search algorithm to off-line optimization of PI parameters for DSP-based DC motor drives. Neural Comput. Appl. 30, 1689-1699 (2018) https://doi.org/10.1007/s00521-017-3256-5
  30. Ziegler, J.-G., Nichols, N.-B.: Optimum settings for automatic controllers. Trans. SME 64(11), 759-768 (1942)
  31. Hauge, F., Lie, B.: Relaxed Ziegler-Nichols closed loop tuning of PI controllers. MIC Model. Identif. Control 34(2), 83-97 (2013) https://doi.org/10.4173/mic.2013.2.4
  32. Mayo-Maldonado, J.-C., Rosas-Caro, J.-C., Salas-Cabrera, R., Gonzalez-Rodriguez, A., Ruiz-Martinez, O.-F., Castillo-Gutierrez, R., Cisneros-Villegas, H.: State space modeling and control of the DC-DC multilevel boost converter. In: 20th International Conference on Electronics, Communications and Computers (CONIELECOMP). (2010)