DOI QR코드

DOI QR Code

An empirical study on the X-ray attenuation capability of n-WO3/n-Bi2O3/PVA with added starch

  • Received : 2021.07.13
  • Accepted : 2022.03.30
  • Published : 2022.09.25

Abstract

Matrix composites of n-WO3/n-Bi2O3/PVA with different loadings of n-WO3/n-Bi2O3 mixtures (0-15 wt%) and starch (0 and 3 wt%) were fabricated by using melt-mixing method. The X-ray attenuation capability were evaluated based on mass attenuation coefficient (μ/⍴) using a general diagnostic X-ray machine at 40-100 kVp. The effect of starch addition on the dispersion of the fillers in the PVA matrix were observed by using FESEM through morphological analysis. The fabricated samples have shrunken and caused their thickness to be decreased (0.35 mm-0.55 mm) after the drying process even though fixed thickness (2.0 mm) was set initially. The density and HVL values of the samples with 3 wt% starch was seen lower than samples without starch (0 wt%), however the former have provided improvement in filler dispersion and better X-ray attenuation capability compared to the latter. As conclusion, the matrix composite of n-WO3/n-Bi2O3/PVA with 15 wt% of n-Bi2O3, 8 wt% of n-WO3 and 3 wt% starch can be selected as the best promising candidate for X-ray shielding materials.

Keywords

Acknowledgement

The authors gratefully acknowledge financial support from Ernest Cook ultrasound Research and Educational Institute (ECUREI) that enabled the completion of studies that resulted into this article. Moreover, this work was funded under Nippon Sheet Glass Foundation for Materials Science and Engineering (304/PFIZIK/6501088/N120); Research University (Individual) Grant (RUI), Universiti Sains Malaysia, Malaysia (1001/PFIZIK/8011059); and Malaysian Fundamental Research Grant Scheme (FRGS) (203/PFIZIK/6711898).

References

  1. S. Alireza, S. Mojtaba, R. Faghihi, M. Arjmand, Lead oxide-decorated graphene oxide/epoxy composite towards X-ray radiation shielding, Radiat. Phys. Chem. 146 (2018) 77-85. https://doi.org/10.1016/j.radphyschem.2018.01.008
  2. IAEA, Safety Reports Series No. 47 - Radiation Protection in the Design of Radiotherapy Facilities vol. 9, 2006.
  3. K. Verdipoor, A. Alemi, A. Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding, Radiat. Phys. Chem. 147 (2018) 85-90. https://doi.org/10.1016/j.radphyschem.2018.02.017
  4. M.R. Aghamiri, S.M.J. Mortazavi, M. Tayebi, M.A. Mosleh-Shirazi, H. Baharvand, A. Tavakkoli-Golpayegani, B. Zeinali-Rafsanjani, A novel design for production of efficient flexible lead-free shields against X-ray photons in diagnostic energy range, J. Biomed. Phys. Eng. 1 (2011).
  5. A.G. Nunez-Briones, R. Benavides, E. Mendoza-Mendoza, M.E. Martinez-Pardo, H. Carrasco-Abrego, C. Kotzian, F.R. Saucedo-Zendejo, L.A. Garcia-Cerda, Preparation of PVC/Bi2O3 composites and their evaluation as low energy X-ray radiation shielding, Radiat. Phys. Chem. 179 (2020), 109198.
  6. D. Cao, G. Yang, M. Bourham, D. Moneghan, Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites, Nucl. Eng. Technol. (2020) 2-8.
  7. K.K. Chawla, Composite Materials: Science and Engineering, third ed., Springer, New York, 2013.
  8. W. Guolong, Y. Demei, D.K. Ajit, Z. Lifeng, Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials, Prog. Polym. Sci. 75 (2017) 73-107. https://doi.org/10.1016/j.progpolymsci.2017.08.002
  9. M. Zagho, E. Hussein, A. Elzatahry, Recent overviews in functional polymer composites for biomedical applications, Polymers (Basel) 10 (2018).
  10. K. Friedrich, A.A. Almajid, Manufacturing aspects of advanced polymer composites for automotive applications, Appl. Compos. Mater. 20 (2013) 107-128. https://doi.org/10.1007/s10443-012-9258-7
  11. A.W. Owais, H.J. Ryu, Tungsten-based composites for nuclear fusion applications, Nuclear Material Performance (2013) 139-161.
  12. A. Barabash, D. Barabash, V. Pertsev, D. Panfilov, Polymer-composite materials for radiation protection, in: V. Murgul, M. Pasetti (Eds.), International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018, Advances in Intelligent Systems and Computing vol. 983, Springer, Cham, 2018.
  13. M.R. Ambika, N. Nagaiah, S.K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites, J. Appl. Polym. Sci. 134 (2017).
  14. N.Z. Noor Azman, S.A. Siddiqui, I.M. Low, Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays, Mater. Sci. Eng. C 33 (2013) 4952-4957. https://doi.org/10.1016/j.msec.2013.08.023
  15. S. Chen, S. Nambiar, Z. Li, E. Osei, J. Darko, W. Zheng, Z. Sun, P. Liu, J.T.W. Yeow, Bismuth oxide-based nanocomposite for high-energy electron radiation shielding, J. Mater. Sci. 54 (2019) 3023-3034. https://doi.org/10.1007/s10853-018-3063-0
  16. N. Cherkashina, V.I. Pavlenko, A. Noskov, Synthesis and property evaluations of highly filled polyimide composites under thermal cycling conditions from -190℃ to +200℃, Cryogenics (Guildf) (2019), 102995.
  17. B.M. Abunahel, I.S. Mustafa, N.Z. Noor Azman, Characteristics of X-ray attenuation in nano-sized bismuth oxide/epoxy-polyvinyl alcohol (PVA) matrix composites, Appl. Phys. Mater. Sci. Process 124 (2018) 1-7. https://doi.org/10.1007/s00339-017-1423-2
  18. C. Milena, B. Hincapie, M. Jonathan, P. C ardenas, J. Edgar, A. Orjuela, Physical- chemical properties of bismuth and bismuth oxides: synthesis, characterization and applications propiedades Fisico-Quimicas Del Bismuto Y Oxidos De Bismuto:Sintesis, Caracterizacion Y Aplicaciones (2012) 139 e148.
  19. N.Z. Noor Azman, N.F.L. Musa, N.N.A. Nik Ab Razak, R.M. Ramli, I.S. Mustafa, A. Abdul Rahman, N.Z. Yahaya, Effect of Bi2O3 particle sizes and addition of starch into Bi2O3ePVA composites for X-ray shielding, Appl. Phys. Mater. Sci. Process 122 (2016) 1-9. https://doi.org/10.1007/s00339-015-9525-1
  20. A. Aghaz, R. Faghihi, S.M.J. Mortazavi, A. Haghparast, S. Mehdizadeh, S. Sina, Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range, Int. J. Radiat. Res. 14 (2016) 127-131. https://doi.org/10.18869/acadpub.ijrr.14.2.127
  21. M. Tanahashi, Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers, Materials (Basel) 3 (2010) 1593-1619. https://doi.org/10.3390/ma3031593
  22. C. Goyon, R.S. Davis, Bipm, H. Bettin, H. Toth, Comparison of Density Measurements Carried Out by the PTB and the BIPM on a 1.02 Kg Cylinder of Platinum-Iridium, 2010, pp. 1-8. Rapport BIPM -2010/10.
  23. B. Dan-Asabe, S.A. Yaro, D.S. Yawas, S.Y. Aku, Water displacement and bulk density-relation methods of finding density of powdered materials, Int. J. Innovat.Res. Sci.Eng. Technol. 2 (2013) 5561-5566.
  24. B.M. Abunahel, R.M. Ramli, K.M. Quffa, N.Z. Noor Azman, Effect of nanofibrous porosity on the X-ray attenuation properties of electrospun n-Bi2O3/epoxyepolyvinyl alcohol (PVA) nanofiber mats, Appl. Phys. A Mater. Sci. Process 124 (2018).
  25. S. Li, C. Wang, J. Zhou, Effect of Starch Addition on Microstructure and Properties of Highly Porous Alumina Ceramics, vol. 39, 2013, pp. 8833-8839. https://doi.org/10.1016/j.ceramint.2013.04.072
  26. G. Reshmi, Nanocomposites- A review, J. of Dentistry and Oral Biosciences 2 (2011) 38-40.
  27. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley Sons, Inc, 2004, p. 607.
  28. M. Mahesh, The essential physics of medical imaging, Med. Phys. 40 (2013), 77301. Third Edition. https://doi.org/10.1118/1.4811156
  29. R. Malekzadeh, P. Mehnati, M.Y. Sooteh, A. Mesbahi, Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuthesilicon shields in diagnostic radiology, Radiol. Phys. Technol. 12 (2019) 325-334. https://doi.org/10.1007/s12194-019-00529-3
  30. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass, J. NonCryst. Solids 512 (2019) 140-147. https://doi.org/10.1016/j.jnoncrysol.2019.03.004
  31. Y.M.Z. Ahmed, E.M.M. Ewais, S.M. El-Sheikh, Effect of dispersion parameters on the consolidation of starch-loaded hydroxyapatite slurry, Process. Appl. Ceram. 8 (2014) 127-135. https://doi.org/10.2298/PAC1403127A
  32. M.I. Sayyed, Y. Al-Hadeethi, Maha M. AlShammari, Moustafa Ahmed, Saleh H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2eB2O3eZnOeLi2O3eBi2O3, Ceram. Int. 47 (2021) 611-618. https://doi.org/10.1016/j.ceramint.2020.08.168
  33. S.M. Tajudin, A.H.A. Sabri, M.Z. Abdul Aziz, S.F. Olukotun, B.M. Ojo, M.K. Fasasi, Feasibility of clay-shielding material for low-energy photons (gamma/X), Nucl. Eng. Technol. 51 (2019) 1333-1337. https://doi.org/10.1016/j.net.2019.03.010