DOI QR코드

DOI QR Code

Effect of LPS and melatonin on early development of mouse embryo

  • Park, Haeun (Department of Stem Cell and Regenerative Biotechnology, Konkuk University) ;
  • Jang, Hoon (Department of Life Sciences, Jeonbuk National University) ;
  • Choi, Youngsok (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
  • Received : 2022.09.01
  • Accepted : 2022.09.09
  • Published : 2022.09.30

Abstract

Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.

Keywords

Acknowledgement

I would like to thank Dr. Ok-Hee Lee for valuable discussion and comments for the manuscript.

References

  1. Barnes PJ. 1997. Nuclear factor-kappa B. Int. J. Biochem. Cell Biol. 29:867-870. https://doi.org/10.1016/S1357-2725(96)00159-8
  2. Batioglu AS, Sahin U, Gurlek B, Ozturk N, Unsal E. 2012. The efficacy of melatonin administration on oocyte quality. Gynecol. Endocrinol. 28:91-93. https://doi.org/10.3109/09513590.2011.589925
  3. Bidne KL, Dickson MJ, Ross JW, Baumgard LH, Keating AF. 2018. Disruption of female reproductive function by endotoxins. Reproduction 155:R169-R181. https://doi.org/10.1530/REP-17-0406
  4. Bromfield JJ and Sheldon IM. 2013. Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo. Biol. Reprod. 88:98.
  5. Cavaillon JM. 2018. Exotoxins and endotoxins: inducers of inflammatory cytokines. Toxicon 149:45-53. https://doi.org/10.1016/j.toxicon.2017.10.016
  6. Cebral E, Carrasco I, Vantman D, Smith R. 2007. Preimplantation embryotoxicity after mouse embryo exposition to reactive oxygen species. Biocell 31:51-59. https://doi.org/10.32604/biocell.2007.31.051
  7. Chatterjee N and Walker GC. 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58:235-263. https://doi.org/10.1002/em.22087
  8. Chazaud C, Yamanaka Y, Pawson T, Rossant J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615-624. https://doi.org/10.1016/j.devcel.2006.02.020
  9. Chen YH, Xu DX, Wang JP, Wang H, Wei LZ, Sun MF, Wei W. 2006. Melatonin protects against lipopolysaccharide-induced intra-uterine fetal death and growth retardation in mice. J. Pineal Res. 40:40-47. https://doi.org/10.1111/j.1600-079X.2005.00274.x
  10. Choi EY, Jin JY, Lee JY, Choi JI, Choi IS, Kim SJ. 2011. Melatonin inhibits Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-6 in murine macrophages by suppressing NF-κB and STAT1 activity. J. Pineal Res. 50:197-206.
  11. Eryilmaz OG, Devran A, Sarikaya E, Aksakal FN, Mollamahmutoglu L, Cicek N. 2011. Melatonin improves the oocyte and the embryo in IVF patients with sleep disturbances, but does not improve the sleeping problems. J. Assist. Reprod. Genet. 28:815-820. https://doi.org/10.1007/s10815-011-9604-y
  12. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. 2018. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122:877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401
  13. Goto Y, Noda Y, Mori T, Nakano M. 1993. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15:69-75. https://doi.org/10.1016/0891-5849(93)90126-F
  14. Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. 2008. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44:1295-1304. https://doi.org/10.1016/j.freeradbiomed.2007.11.014
  15. Hansen PJ and Block J. 2004. Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reprod. Fertil. Dev. 16:1-14. https://doi.org/10.1071/RD03073
  16. He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J, Zhu K, Song Y, Ji P, Liu G. 2016. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte's quality under in vitro conditions. Int. J. Mol. Sci. 17:939. https://doi.org/10.3390/ijms17060939
  17. Ighodaro OM and Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 54:287-293.
  18. Ishizuka B, Kuribayashi Y, Murai K, Amemiya A, Itoh MT. 2000. The effect of melatonin on in vitro fertilization and embryo development in mice. J. Pineal Res. 28:48-51. https://doi.org/10.1034/j.1600-079x.2000.280107.x
  19. Jacob AI, Goldberg PK, Bloom N, Degenshein GA, Kozinn PJ. 1977. Endotoxin and bacteria in portal blood. Gastroenterology 72:1268-1270. https://doi.org/10.1016/S0016-5085(77)80025-5
  20. Jaiswal YK, Jaiswal MK, Agrawal V, Chaturvedi MM. 2009. Bacterial endotoxin (LPS)-induced DNA damage in preimplanting embryonic and uterine cells inhibits implantation. Fertil. Steril. 91(5 Suppl):2095-2103. https://doi.org/10.1016/j.fertnstert.2008.04.050
  21. Jang H, Hong K, Choi Y. 2017. Melatonin and fertoprotective adjuvants: prevention against premature ovarian failure during chemotherapy. Int. J. Mol. Sci. 18:1221. https://doi.org/10.3390/ijms18061221
  22. Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. 2004. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod. Biomed. Online 9:409-417. https://doi.org/10.1016/S1472-6483(10)61276-X
  23. Kuwabara T and Imajoh-Ohmi S. 2004. LPS-induced apoptosis is dependent upon mitochondrial dysfunction. Apoptosis 9:467-474. https://doi.org/10.1023/B:APPT.0000031453.90821.6a
  24. Lane M and Gardner DK. 2007. Embryo culture medium: which is the best? Best Pract. Res. Clin. Obstet. Gynaecol. 21:83-100. https://doi.org/10.1016/j.bpobgyn.2006.09.009
  25. Leazer TM, Barbee B, Ebron-McCoy M, Henry-Sam GA, Rogers JM. 2002. Role of the maternal acute phase response and tumor necrosis factor alpha in the developmental toxicity of lipopolysaccharide in the CD-1 mouse. Reprod. Toxicol. 16:173-179. https://doi.org/10.1016/S0890-6238(02)00011-4
  26. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80:2587.
  27. Levy R. 2001. Genetic regulation of preimplantation embryo survival. Int. Rev. Cytol. 210:1-37. https://doi.org/10.1016/S0074-7696(01)10002-1
  28. Li L, Zheng P, Dean J. 2010. Maternal control of early mouse development. Development 137:859-870. https://doi.org/10.1242/dev.039487
  29. Lindner GM and Wright Jr. RW. 1983. Bovine embryo morphology and evaluation. Theriogenology 20:407-416. https://doi.org/10.1016/0093-691X(83)90201-7
  30. Magata F, Horiuchi M, Echizenya R, Miura R, Chiba S, Matsui M, Miyamoto A, Kobayashi Y, Shimizu T. 2014. Lipopolysaccharide in ovarian follicular fluid influences the steroid production in large follicles of dairy cows. Anim. Reprod. Sci. 144:6-13. https://doi.org/10.1016/j.anireprosci.2013.11.005
  31. Mahdavinezhad F, Kazemi P, Fathalizadeh P, Sarmadi F, Sotoodeh L, Hashemi E, Hajarian H, Dashtizad M. 2019. In vitro versus in vivo: development-, apoptosis-, and implantation-related gene expression in mouse blastocyst. Iran. J. Biotechnol. 17:e2157.
  32. Marrs RP, Saito H, Yee B, Sato F, Brown J. 1984. Effect of variation of in vitro culture techniques upon oocyte fertilization and embryo development in human in vitro fertilization procedures. Fertil. Steril. 41:519-523. https://doi.org/10.1016/S0015-0282(16)47771-X
  33. Mayo JC, Sainz RM, Antoli I, Herrera F, Martin V, Rodriguez C. 2002. Melatonin regulation of antioxidant enzyme gene expression. Cell. Mol. Life Sci. 59:1706-1713. https://doi.org/10.1007/PL00012498
  34. Mihajlovic AI and Bruce AW. 2017. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity. Open Biol. 7:170210. https://doi.org/10.1098/rsob.170210
  35. Moghadam F, Hajian M, Rouhollahi Varnosfaderani S, Jafarpour F, Nasr Esfahani MH. 2021. Effect of rosiglitazone on developmental competence of mouse embryos treated with lipopolysaccharide. Theriogenology 161:57-64. https://doi.org/10.1016/j.theriogenology.2020.11.022
  36. Mokhtari S, Mahdavi AH, Hajian M, Kowsar R, Varnosfaderani SR, Nasr-Esfahani MH. 2020. The attenuation of the toxic effects of LPS on mouse pre-implantation development by alpha-lipoic acid. Theriogenology 143:139-147. https://doi.org/10.1016/j.theriogenology.2019.12.008
  37. Pabon Jr. JE, Findley WE, Gibbons WE. 1989. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil. Steril. 51:896-900. https://doi.org/10.1016/S0015-0282(16)60688-X
  38. Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. 1994. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci. 55:PL271-PL276.
  39. Quinn P, Warnes GM, Kerin JF, Kirby C. 1985. Culture factors affecting the success rate of in vitro fertilization and embryo transfer. Ann. N. Y. Acad. Sci. 442:195-204. https://doi.org/10.1111/j.1749-6632.1985.tb37520.x
  40. Raetz CR and Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  41. Richter KS. 2008. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr. Opin. Obstet. Gynecol. 20:292-304. https://doi.org/10.1097/GCO.0b013e3282fe743b
  42. Rizos D, Clemente M, Bermejo-Alvarez P, de La Fuente J, Lonergan P, Gutierrez-Adan A. 2008. Consequences of in vitro culture conditions on embryo development and quality. Reprod. Domest. Anim. 43 Suppl 4:44-50. https://doi.org/10.1111/j.1439-0531.2008.01230.x
  43. Rizos D, Maillo V, Sanchez-Calabuig MJ, Lonergan P. 2017. The consequences of maternal-embryonic cross talk during the periconception period on subsequent embryonic development. Adv. Exp. Med. Biol. 1014:69-86. https://doi.org/10.1007/978-3-319-62414-3_4
  44. Rossant J. 1976. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J. Embryol. Exp. Morphol. 36:283-290.
  45. Ronnberg L, Kauppila A, Leppaluoto J, Martikainen H, Vakkuri O. 1990. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J. Clin. Endocrinol. Metab. 71:492-496.
  46. Sharma RK and Agarwal A. 2004. Role of reactive oxygen species in gynecologic diseases. Reprod. Med. Biol. 3:177-199. https://doi.org/10.1111/j.1447-0578.2004.00068.x
  47. Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, Zeng SM, Tian JH, Liu GS. 2009. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J. Pineal Res. 47:318-323. https://doi.org/10.1111/j.1600-079X.2009.00717.x
  48. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebesteny T, Maronde E. 2011. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 51:17-43. https://doi.org/10.1111/j.1600-079X.2011.00856.x
  49. Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, Takasaki A, Reiter RJ, Sugino N. 2020. Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci. 21:1135. https://doi.org/10.3390/ijms21031135
  50. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, Taketani T, Matsuoka A, Yamagata Y, Shimamura K, Morioka H, Ishikawa H, Reiter RJ, Sugino N. 2008. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 44:280-287. https://doi.org/10.1111/j.1600-079X.2007.00524.x
  51. Tarkowski AK. 1959. Experiments on the development of isolated blastomers of mouse eggs. Nature 184:1286-1287. https://doi.org/10.1038/1841286a0
  52. Tian X, Wang F, Zhang L, Ji P, Wang J, Lv D, Li G, Chai M, Lian Z, Liu G. 2017. Melatonin promotes the in vitro development of microinjected pronuclear mouse embryos via its antioxidative and anti-apoptotic effects. Int. J. Mol. Sci. 18:988. https://doi.org/10.3390/ijms18050988
  53. Tobias PS, Soldau K, Ulevitch RJ. 1989. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J. Biol. Chem. 264:10867-10871. https://doi.org/10.1016/S0021-9258(18)81700-8
  54. Tough DF, Sun S, Sprent J. 1997. T cell stimulation in vivo by lipopolysaccharide (LPS). J. Exp. Med. 185:2089-2094. https://doi.org/10.1084/jem.185.12.2089
  55. Truong T and Gardner DK. 2017. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum. Reprod. 32:2404-2413. https://doi.org/10.1093/humrep/dex330
  56. Truong TT, Soh YM, Gardner DK. 2016. Antioxidants improve mouse preimplantation embryo development and viability. Hum. Reprod. 31:1445-1454. https://doi.org/10.1093/humrep/dew098
  57. Wang F, Tian X, Zhang L, Tan D, Reiter RJ, Liu G. 2013. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J. Pineal Res. 55:267-274. https://doi.org/10.1111/jpi.12069
  58. Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. 2006. Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice. Toxicol. Lett. 163:20-29. https://doi.org/10.1016/j.toxlet.2005.09.009
  59. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13:998-1002. https://doi.org/10.1093/humrep/13.4.998
  60. Yang M, Tao J, Chai M, Wu H, Wang J, Li G, He C, Xie L, Ji P, Dai Y, Yang L, Liu G. 2017. Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development: mechanisms and results. Molecules 22:2059. https://doi.org/10.3390/molecules22122059
  61. Yu GM and Tan W. 2019. Melatonin inhibits lipopolysaccharide-induced inflammation and oxidative stress in cultured mouse mammary tissue. Mediators Inflamm. 2019:8597159.
  62. Zeng F and Schultz RM. 2005. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev. Biol. 283:40-57. https://doi.org/10.1016/j.ydbio.2005.03.038
  63. Zhao SJ, Pang YW, Zhao XM, Du WH, Hao HS, Zhu HB. 2017. Effects of lipopolysaccharide on maturation of bovine oocyte in vitro and its possible mechanisms. Oncotarget 8:4656-4667. https://doi.org/10.18632/oncotarget.13965
  64. Zhou Y, Chen YH, Fu L, Yu Z, Xia MZ, Hu XG, Wang H, Xu DX. 2017. Vitamin D3 pretreatment protects against lipopolysaccharide-induced early embryo loss through its anti-inflammatory effects. Am. J. Reprod. Immunol. 77:e12620. https://doi.org/10.1111/aji.12620
  65. Ziomek CA and Johnson MH. 1980. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:935-942. https://doi.org/10.1016/0092-8674(80)90457-2