DOI QR코드

DOI QR Code

Various expression patterns of pregnancy-associated plasma protein-A

  • Jeon, Eunjeong (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Lee, Jihwan (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Son, Junkyu (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Kim, Doosan (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Lim, Dajeong (Animal Genome & Bioinformatics, National Institute of Animal Science, RDA) ;
  • Han, Man-Hye (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Hwang, Seongsoo (Dairy Science Division, National Institute of Animal Science, RDA)
  • Received : 2022.08.02
  • Accepted : 2022.08.10
  • Published : 2022.09.30

Abstract

Pregnancy-associated plasma protein-A (PAPP-A) is known as an important biomarker for fetal abnormality during first trimester and has a pivotal role in follicle development and corpus luteum formation. And also, it is being revealed that an expression of PAPP-A in various cells and tissues such as cancer and lesion area. PAPP-A is the major IGF binding protein-4 (IGFBP-4) protease. Cleavage of IGFBP-4 results in loss of binding affinity for IGF, causing increased IGF bioavailability for proliferation, survival, and migration. Additionally, PAPP-A can be used as a promising therapeutic target for healthy longevity. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. This review will focus on what is currently known about the zinc metalloproteinase, PAPP-A, and its role in cells and tissues. PAPP-A is expressed in proliferating cells such as fetus in uterus, granulosa cells in follicle, dermis in wound, cancer cells, and Sertoli cells in testis. They have common characteristics of proliferation faster than normal cells with stimulating IGFs action and inhibiting IGFBPs. The PAPP-A functions and expression studies in livestock have not yet been conducted much. Further studies are needed to use PAPP-A as a marker for healthy longevity in animal science.

Keywords

Acknowledgement

This work was supported by a grant from the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01681301)" and 2022 the RDA Fellowship Program of National Institute of Animal Science, Rural Development Administration, Republic of Korea.

References

  1. Bersinger NA, Zakher A, Huber U, Pescia G, Schneider H. 1995. A sensitive enzyme immunoassay for pregnancy-associated plasma protein A (PAPP-A): a possible first trimester method of screening for Down syndrome and other trisomies. Arch. Gynecol. Obstet. 256:185-192. https://doi.org/10.1007/BF00634490
  2. Bulut I, Coskun A, Ciftci A, Cetinkaya E, Altiay G, Caglar T, Gulcan E. 2009. Relationship between pregnancy-associated plasma protein-A and lung cancer. Am. J. Med. Sci. 337:241-244. https://doi.org/10.1097/MAJ.0b013e31818967a3
  3. Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D. 2011. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS One 6:e22456. https://doi.org/10.1371/journal.pone.0022456
  4. Chen BK, Leiferman KM, Pittelkow MR, Overgaard MT, Oxvig C, Conover CA. 2003. Localization and regulation of pregnancy-associated plasma protein A expression in healing human skin. J. Clin. Endocrinol. Metab. 88:4465-4471. https://doi.org/10.1210/jc.2003-030193
  5. Choi JK. 2019. Effects of culture duration, follicle stimulating hormone (FSH) type, and activin A concentration on in vitro growth of preantral follicles and maturation of intrafollicular oocytes. J. Anim. Reprod. Biotechnol. 34:117-122. https://doi.org/10.12750/JARB.34.2.117
  6. Conover CA, Bale LK, Mader JR, Mason MA, Keenan KP, Marler RJ. 2010. Longevity and age-related pathology of mice deficient in pregnancy-associated plasma protein-A. J. Gerontol. A Biol. Sci. Med. Sci. 65:590-599.
  7. Conover CA, Bale LK, Marler RJ. 2015. Pregnancy-associated plasma protein-A deficiency improves survival of mice on a high fat diet. Exp. Gerontol. 70:131-134. https://doi.org/10.1016/j.exger.2015.08.007
  8. Conover CA and Oxvig C. 2018. PAPP-A and cancer. J. Mol. Endocrinol. 61:T1-T10. https://doi.org/10.1530/JME-17-0236
  9. Cox E and Takov V. 2021. Embryology, ovarian follicle development. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK532300
  10. Dugoff L, Hobbins JC, Malone FD, Porter TF, Luthy D, Comstock CH, Hankins G, Berkowitz RL, Merkatz I, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, Vidaver J, D'Alton ME. 2004. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER Trial). Am. J. Obstet. Gynecol. 191:1446-1451. https://doi.org/10.1016/j.ajog.2004.06.052
  11. Erickson BH. 1966. Development and radio-response of the prenatal bovine ovary. J. Reprod. Fertil. 11:97-105. https://doi.org/10.1530/jrf.0.0110097
  12. Erickson GF, Nakatani A, Ling N, Shimasaki S. 1992. Cyclic changes in insulin-like growth factor-binding protein-4 messenger ribonucleic acid in the rat ovary. Endocrinology 130:625-636. (Erratum published 1992, Endocrinology 131:2350)
  13. Erickson GF and Shimasaki S. 2001. The physiology of folliculogenesis: the role of novel growth factors. Fertil. Steril. 76:943-949. https://doi.org/10.1016/S0015-0282(01)02859-X
  14. Fortune JE, Rivera GM, Yang MY. 2004. Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim. Reprod. Sci. 82-83:109-126. https://doi.org/10.1016/j.anireprosci.2004.04.031
  15. Gagnon A, Wilson RD, Society of Obstetricians and Gynaecologists of Canada Genetics Committee. 2008. Obstetrical complications associated with abnormal maternal serum markers analytes. J. Obstet. Gynaecol. Can. 30:918-932. https://doi.org/10.1016/S1701-2163(16)32973-5
  16. Gall SA and Halbert SP. 1972. Antigenic constituents in pregnancy plasma which are undetectable in normal nonpregnant female or male plasma. Int. Arch. Allergy Appl. Immunol. 42:503-515. https://doi.org/10.1159/000230632
  17. Giudice LC. 2001. Insulin-like growth factor family in Graafian follicle development and function. J. Soc. Gynecol. Investig. 8(1 Suppl Proceedings):S26-S29.
  18. Gougeon A, Ecochard R, Thalabard JC. 1994. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and earlygrowing follicles in aging women. Biol. Reprod. 50:653-663. https://doi.org/10.1095/biolreprod50.3.653
  19. Gougeon A. 1986. Dynamics of follicular growth in the human: a model from preliminary results. Hum. Reprod. 1:81-87. https://doi.org/10.1093/oxfordjournals.humrep.a136365
  20. Huang J, Tabata S, Kakiuchi S, The Van T, Goto H, Hanibuchi M, Nishioka Y. 2013. Identification of pregnancy-associated plasma protein A as a migration-promoting gene in malignant pleural mesothelioma cells: a potential therapeutic target. Oncotarget 4:1172-1184. https://doi.org/10.18632/oncotarget.1126
  21. Kim CW, Choi EJ, Kim EJ, Siregar AS, Han J, Kang DW. 2020. Aquaporin 4 expression is downregulated in large bovine ovarian follicles. J. Anim. Reprod. Biotechnol. 35:315-322. https://doi.org/10.12750/JARB.35.4.315
  22. Kim JY, Oh KB, Byun SJ, Ock SA, Lee HC, Hwang S, Park SH, Ha W, Woo JS, Song H. 2018. Cytological analysis of pregnancy-associated plasma protein-A expression in porcine neonatal testis. J. Emb. Trans. 33:177-183.
  23. Kirschner A, Thiede M, Grunewald TG, Alba Rubio R, Richter GH, Kirchner T, Busch DH, Burdach S, Thiel U. 2017. Pappalysin-1 T cell receptor transgenic allo-restricted T cells kill Ewing sarcoma in vitro and in vivo. Oncoimmunology 6:e1273301. https://doi.org/10.1080/2162402X.2016.1273301
  24. Krantz D, Goetzl L, Simpson JL, Thom E, Zachary J, Hallahan TW, Silver R, Pergament E, Platt LD, Filkins K, Johnson A, Mahoney M, Hogge WA, Wilson RD, Mohide P, Hershey D, Wapner R, First Trimester Maternal Serum Biochemistry and Fetal Nuchal Translucency Screening (BUN) Study Group. 2004. Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 191:1452-1458. https://doi.org/10.1016/j.ajog.2004.05.068
  25. Kuhajda FP and Eggleston JC. 1985. Pregnancy-associated plasma protein A. A clinically significant predictor of early recurrence in stage I breast carcinoma is independent of estrogen receptor status. Am. J. Pathol. 121:342-348.
  26. Kwik M and Morris J. 2003. Association between first trimester maternal serum pregnancy associated plasma protein-A and adverse pregnancy outcome. Aust. N. Z. J. Obstet. Gynaecol. 43:438-442. https://doi.org/10.1046/j.0004-8666.2003.00126.x
  27. Laughon SK, Rebarber A, Rolnitzky L, Fink L, Saltzman DH. 2009. Decreased first-trimester maternal serum free-beta subunit human chorionic gonadotropin and preterm birth in twin gestations. Am. J. Perinatol. 26:491-494. https://doi.org/10.1055/s-0029-1214250
  28. Lawrence JB, Oxvig C, Overgaard MT, Sottrup-Jensen L, Gleich GJ, Hays LG, Yates JR 3rd, Conover CA. 1999. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc. Natl. Acad. Sci. U. S. A. 96:3149-3153. https://doi.org/10.1073/pnas.96.6.3149
  29. Lin TM, Halbert SP, Kiefer D, Spellacy WN, Gall S. 1974. Characterization of four human pregnancy-associated plasma proteins. Am. J. Obstet. Gynecol. 118:223-236. https://doi.org/10.1016/0002-9378(74)90553-5
  30. Loddo M, Andryszkiewicz J, Rodriguez-Acebes S, Stoeber K, Jones A, Dafou D, Apostolidou S, Wollenschlaeger A, Widschwendter M, Sainsbury R, Tudzarova S, Williams GH. 2014. Pregnancy-associated plasma protein A regulates mitosis and is epigenetically silenced in breast cancer. J. Pathol. 233:344-356. https://doi.org/10.1002/path.4393
  31. Malone FD, Canick JA, Ball RH, Nyberg DA, Comstock CH, Bukowski R, Berkowitz RL, Gross SJ, Dugoff L, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, Dukes K, Bianchi DW, Rudnicka AR, Hackshaw AK, Lambert-Messerlian G, Wald NJ, D'Alton ME, First- and Second-Trimester Evaluation of Risk (FASTER) Research Consortium. 2005. First-trimester or second-trimester screening, or both, for Down's syndrome. N. Engl. J. Med. 353:2001-2011. https://doi.org/10.1056/NEJMoa043693
  32. Matsui M, Sonntag B, Hwang SS, Byerly T, Hourvitz A, Adashi EY, Shimasaki S, Erickson GF. 2004. Pregnancy-associated plasma protein-a production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15. Endocrinology 145:3686-3695. https://doi.org/10.1210/en.2003-1642
  33. Mesdaghi-Nia E, Behrashi M, Saeidi A, Abedzadeh Kalahroodi M, Sehat M. 2016. Association between PAPP-A and placental thickness. Int. J. Reprod. Biomed. 14:421-426. https://doi.org/10.29252/ijrm.14.6.421
  34. Ong CY, Liao AW, Spencer K, Munim S, Nicolaides KH. 2000. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 107:1265-1270. https://doi.org/10.1111/j.1471-0528.2000.tb11618.x
  35. Overgaard MT, Oxvig C, Christiansen M, Lawrence JB, Conover CA, Gleich GJ, Sottrup-Jensen L, Haaning J. 1999. Messenger ribonucleic acid levels of pregnancy-associated plasma protein-A and the proform of eosinophil major basic protein: expression in human reproductive and nonreproductive tissues. Biol. Reprod. 61:1083-1089. https://doi.org/10.1095/biolreprod61.4.1083
  36. Pedersen JF, Sorensen S, Ruge S. 1995. Human placental lactogen and pregnancy-associated plasma protein A in first trimester and subsequent fetal growth. Acta Obstet. Gynecol. Scand. 74:505-508. https://doi.org/10.3109/00016349509024379
  37. Resch ZT, Chen BK, Bale LK, Oxvig C, Overgaard MT, Conover CA. 2004. Pregnancy-associated plasma protein a gene expression as a target of inflammatory cytokines. Endocrinology 145:1124-1129. https://doi.org/10.1210/en.2003-1313
  38. Rosner JY, Fox NS, Saltzman D, Klauser CK, Rebarber A, Gupta S. 2015. Abnormal biochemical analytes used for aneuploidy screening and adverse pregnancy outcomes in twin gestations. Am. J. Perinatol. 32:1331-1335. https://doi.org/10.1055/s-0035-1564428
  39. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, Afar D, Burdach SE. 2004. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res. 64:8213-8221. https://doi.org/10.1158/0008-5472.CAN-03-4059
  40. Tanaka Y, Kobayashi H, Suzuki M, Hirashima Y, Kanayama N, Terao T. 2004. Genetic downregulation of pregnancy-associated plasma protein-A (PAPP-A) by bikunin reduces IGF-I-dependent Akt and ERK1/2 activation and subsequently reduces ovarian cancer cell growth, invasion and metastasis. Int. J. Cancer 109:336-347. https://doi.org/10.1002/ijc.11700
  41. Thomsen J, Hjortebjerg R, Espelund U, Ortoft G, Vestergaard P, Magnusson NE, Conover CA, Tramm T, Hager H, Hogdall C, Hogdall E, Oxvig C, Frystyk J. 2015. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma. Oncotarget 6:32266-32278. https://doi.org/10.18632/oncotarget.5010
  42. Turner JM and Kumar S. 2020. Low first trimester pregnancy-associated plasma protein-A levels are not associated with an increased risk of intrapartum fetal compromise or adverse neonatal outcomes: a retrospective cohort study. J. Clin. Med. 9:1108. https://doi.org/10.3390/jcm9041108