DOI QR코드

DOI QR Code

설악산과 지리산 국립공원에 서식하는 다람쥐의 연중 관찰 양상과 행동 패턴

Annual Variation on Observation and Activity Pattern of Korean Chipmunk (Tamias sibiricus) in the Seoraksan and Jirisan National Parks, South Korea

  • 엄태경 (중앙대학교 대학원 생명자원공학부) ;
  • 이재강 (중앙대학교 대학원 생명자원공학부) ;
  • 이동호 (중앙대학교 대학원 생명자원공학부) ;
  • 고현규 (중앙대학교 대학원 생명자원공학부) ;
  • 배호경 (대한환경평가그룹 환경평가부) ;
  • 김규중 (중앙대학교 대학원 생명자원공학부) ;
  • 황현수 (국립생태원 보호지역연구팀) ;
  • 박고은 (국립산림과학원 산림생태연구과) ;
  • 최원일 (국립산림과학원 산림생태연구과) ;
  • 임종환 (국립산림과학원 산림생태연구과) ;
  • 박찬열 (국립산림과학원 도시숲연구과) ;
  • 임신재 (중앙대학교 대학원 생명자원공학부)
  • Eom, Tae-Kyung (School of Bioresource and Bioscience, Chung-Ang University) ;
  • Lee, Jae-Kang (School of Bioresource and Bioscience, Chung-Ang University) ;
  • Lee, Dong-Ho (School of Bioresource and Bioscience, Chung-Ang University) ;
  • Ko, Hyeongyu (School of Bioresource and Bioscience, Chung-Ang University) ;
  • Bae, Ho-Kyoung (Department of Environment Assessment, Korea Environment Assessment Group) ;
  • Kim, Kyu-Jung (School of Bioresource and Bioscience, Chung-Ang University) ;
  • Hwang, Hyun-Su (Team of Specific Protected Area Research, National Institute of Ecology) ;
  • Park, Go Eun (Division of Forest Ecology, National Institute of Forest Science) ;
  • Choi, Won-Il (Division of Forest Ecology, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Division of Forest Ecology, National Institute of Forest Science) ;
  • Park, Chan-Ryul (Division of Urban Forests, National Institute of Forest Science) ;
  • Rhim, Shin-Jae (School of Bioresource and Bioscience, Chung-Ang University)
  • 투고 : 2022.07.12
  • 심사 : 2022.08.01
  • 발행 : 2022.08.31

초록

본 연구는 2019년 5월부터 2021년 5월까지 무인센서카메라를 이용하여 설악산과 지리산 국립공원에 서식하는 다람쥐(Tamias sibiricus)의 연중 관찰 양상과 행동 패턴을 파악하기 위해 실시하였다. 주차별 관찰빈도를 지표로 하여 관찰빈도의 연중 변화를 파악하였고 봄과 여름, 가을의 시간별 관찰빈도를 이용하여 계절별 일일 행동 패턴을 분석하였다. 다람쥐의 일일 행동 패턴은 지역 및 계절에 따른 차이 없이 주행성인 것으로 나타났다. 두 지역에 서식하는 다람쥐는 연중 관찰 기간에 차이가 있었다. 설악산에서 18~45주차에, 지리산에서는 7~48주차에 다람쥐가 관찰되었으며, 이는 동면시기에 영향을 받은 것으로 판단된다. 두 지역에서 다람쥐는 가을에 가장 많이 관찰되었다. 계절에 따른 다람쥐의 개체군 동태 및 활동량 변화가 무인센서카메라 관찰빈도에 반영되는 것으로 판단된다. 무인센서카메라의 관찰빈도는 간접적인 지표로서 대상종의 서식 밀도와 활동량을 구분해낼 수 없다는 한계점이 존재하지만, 방법이 쉽고 조사자에 따른 편차가 적어 효율적인 모니터링 방법으로 제시될 수 있을 것으로 판단된다.

This study was conducted to identify annual variation of observation and activity pattern of Korean chipmunk (Tamias sibiricus) using camera traps in the Seoraksan and Jirisan National Parks, South Korea from May 2019 to May 2021. The annual variation was identified based on the observed frequency through weekly observations. Daily activity patterns of the species were also analyzed by season. The daily activity pattern of chipmunk appeared to be constantly diurnal across the years regardless of habitat or season. The Korean chipmunks living in the two different regions were observed in different time periods throughout the year. While the chipmunks inhabiting the Seoraksan were observed from 18th to 45th week, the chipmunks inhabiting the Jirisan National Park were observed from 7th to 48th week. This may be influenced by the hibernation period of chipmunks in the two different regions. In both regions, chipmunks were most frequently observed in autumn. It is considered that seasonal variation on population dynamic and activity patterns of chipmunks were reflected in the observation frequency. Although the observation frequency of camera trap is an indirect indicator and thus having a limitation that it cannot distinguish the population density and amount of activity for the target species, camera trapping is still an effective survey technique for monitoring mammals due to its high accessibility and easy use.

키워드

과제정보

이 논문은 국립산림과학원이 지원하는 연구비에 의하여 연구되었음.

참고문헌

  1. Banjade, M., S.H. Han, Y.H. Jeong and H.S. Oh(2021) Diel and seasonal activity pattern of alien sika deer with sympatric mammalian species from Muljangori-oreum wetland of Hallasan National Park, South Korea. Journal of Ecology and Environment 45: 10. https://doi.org/10.1186/s41610-021-00185-y
  2. Bergeron, P., D.R. Ale, M.M. Humphries and D. Garant(2011) Anticipation and tracking of pulsed resources drive population dynamics in Eastern chipmunks. Ecology 92(14): 2027-2034. https://doi.org/10.1890/11-0766.1
  3. Blake, B.H. and K.E. Gillett(1988) Estrous cycle and related aspects of reproduction in captive Asian chipmunks, Tamias sibiricus. Journal of Mammalogy 69(3): 598-603. https://doi.org/10.2307/1381352
  4. Botts, R.T., A.A. Eppert, T.J. Wiegman, A. Rodriguez, S.R. Blankenship, E.M. Asselin, W.M. Garley, A.P. Wagner, S.E. Ullrich, G.R. Allen and M.S. Mooring(2020) Circadian activity patterns of mammalian predators and prey in Costa Rica. Journal of Mammalogy 101(5): 1313-1331. https://doi.org/10.1093/jmammal/gyaa103
  5. Burton, A.C., E. Neilson, D. Moreira, A. Ladle, R. Steenweg, J.T. Fisher, E. Bayne and S. Boutin(2015) Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52(3): 675-685. https://doi.org/10.1111/1365-2664.12432
  6. Decoursey, P.J., J.K. Walker and S.A. Smith(2000). A circadian pacemaker in free-living chipmunks: Essential for survival? Journal of Comparative Physiology A 186(2): 169-180. https://doi.org/10.1007/s003590050017
  7. Dunford, C.(1972) Summer activity of Eastern chipmunks. Journal of Mammalogy 53(1): 176-180. https://doi.org/10.2307/1378838
  8. Duong, T.(2007) ks: Kernel density estimation and Kernel discriminant analysis for multivariate data in R. Journal of Statistical Software 21(7): 1-16. https://doi.org/10.18637/jss.v021.i07
  9. Elliot, L.(1978) Social behavior and foraging ecology of the Eastern chipmunk (Tamias striatus) in the Adirondack mountains. Smithsonian Institution Press, Washington, 96pp.
  10. Forsyth, D.J. and D.A. Smith(1973) Temporal variability in home ranges of Eastern chipmunks (Tamias striatus) in a south-eastern Ontario woodlot. American Midland Naturalist 90(1): 107-117. https://doi.org/10.2307/2424271
  11. French, A.R.(2000) Interdependency of stored food and changes in body temperature during hibernation of the Eastern chipmunk, Tamias Striatus. Journal of Mammalogy 81(4): 979-985. https://doi.org/10.1644/1545-1542(2000)081<0979:IOSFAC>2.0.CO;2
  12. Jo, Y.S., J.T. Baccus and J.L. Koprowski(2018) Mammals of Korea. National Institute of Biological Resources, Incheon, Korea, pp.478-481.
  13. Kawamichi, M.(1996) Ecological factors affecting annual variation in commencement of hibernation in wild chipmunk (Tamias sibiricus). Journal of Mammalogy 77(3): 731-744. https://doi.org/10.2307/1382678
  14. Kenagy, G.(1981) Effects of day length, temperature, and endogenous control on annual rhythms of reproduction and hibernation in chipmunks (Eutamias spp.). Journal of Comparative Physiology 141(3): 369-378. https://doi.org/10.1007/BF00609939
  15. Korea Meteorological Administration(2022) Open MET data portal. https://data.kma.go.kr. Accessed on 5 July, 2022.
  16. LaZerte, S.E. and D.L. Kramer(2016) Activity of Eastern chipmunks (Tamias striatus) during the summer and fall. Canadian Journal of Zoology 94(10): 685-695. https://doi.org/10.1139/cjz-2016-0064
  17. Meredith, M. and M.S. Ridout(2021) Overview of the overlap package. R Project. https://cran.r-project.org/web/packages/overlap/overlap.pdf. Accessed on 5 July, 2022.
  18. Monterroso, P., P.C. Alves and P. Ferreras(2014) Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: Implications for species coexistence. Behavioral Ecology and Sociobiology 68(9): 1403-1417. https://doi.org/10.1007/s00265-014-1748-1
  19. R Core Team(2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed on 11 March, 2022.
  20. Ridout, M.S. and M. Linkie(2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological and Environmental Statistics 14(3): 322-337. https://doi.org/10.1198/jabes.2009.08038
  21. Roots, C.(2006) Hibernation. Greenwood Press, Connecticut, pp.138-139.
  22. Schweiger, B.R. and J.K. Frey(2021) Weather determines daily activity pattern of an endemic chipmunk with predictions for climate change. Climate Change Ecology 2: 100027. https://doi.org/10.1016/j.ecochg.2021.100027
  23. Suzuki, K., M. Masaki, C.W. Han, M.H. Yoon, M. Kawamichi and T. Kawamichi(2002) Reproductive ecology of Korean chipmunks in Busan. Proceedings of the Korean Society of Life Science Conference, Korean Society of Life Science, Busan, 92pp.
  24. Waltee, D., B.N. Lonner, A.J. Kuenzi and R.J. Douglass(2009) Seasonal dispersal patterns of Sylvan deer mice (Peromyscus maniculatus) within Montana rangelands. Journal of Wildlife Disease 45(4): 998-1007. https://doi.org/10.7589/0090-3558-45.4.998
  25. Wand, M.P. and M.C. Jones(1994) Multivariate plug-in bandwidth selection. Computational Statistics 9(2): 97-116.
  26. Xu, J., Y. Zhu, S.X. Meng, X. Huang, D. Piao and G.S. Cui(2019) Responses of phenology by climate warming on Korean peninsular in the past three decades. Journal of Climate Change Research 10(4): 437-446. (in Korean with English abstract) https://doi.org/10.15531/KSCCR.2019.10.4.437