DOI QR코드

DOI QR Code

Cause of Rockfall at Natural Monument Pohang Daljeon-ri Columnar Joint

천연기념물 포항 달전리 주상절리의 낙석 발생원인

  • Kim, Jae Hwan (Natural Heritage Center, National Research Institute of Cultural Heritage) ;
  • Kong, Dal-Yong (International Cooperation Division, Cultural Heritage Administration)
  • 김재환 (국립문화재연구원 자연문화재연구실) ;
  • 공달용 (문화재청 국제협력과)
  • Received : 2022.10.09
  • Accepted : 2022.10.18
  • Published : 2022.10.28

Abstract

Monthly monitoring, 3D scan survey, and electrical resistivity survey were conducted from January 2018 to August 2022 to identify the cause of rockfall occurring in Daljeon-ri Columnar Joint (Natural Monument No. 415), Pohang. A total of 3,231 rocks fell from the columnar joint over the past 5 years, and 1,521 (47%) of the falling rocks were below 20 cm in length, 978 (30.3%) of 20-30 cm, and 732 (22.7%) of rocks over 30 cm. While the number of rockfalls by year has decreased since 2018, the frequency of rockfalls bigger than 30 cm tends to increase. Large-scale rockfalls occurred mainly during the thawing season (March-April) and the rainy season (June-July), and the analysis of the relationship between cumulative rainfall and rockfall occurrence showed that cumulative rainfall for 3 to 4 days is also closely related to the occurrence of rockfall. Smectite and illite, which are expansible clay minerals, were observed in XRD analysis of the slope material (filling minerals) in the columnar joint, and the presence of a fault fracture zone was confirmed in the electrical resistivity survey. In addition, the confirmed fault fracture zone and the maximum erosion point analyzed through 3D precision measurement coincided with the main rockfall occurrence point observed by the BTC-6PXD camera. Therefore, the main cause of rockfall at Daljeon-ri columnar joint in Pohang is a combination of internal factors (development of fault fracture zones and joints, weathering of rocks, presence of expansive clay minerals) and external factors (precipitation, rapid thawing phenomenon), resulting in large-scale rockfall. Meanwhile, it was also confirmed that the Pohang-Gyeongju earthquake, which was continuously raised, was not the main cause.

포항 달전리 주상절리(천연기념물 제415호)에서 발생하고 있는 낙석의 원인을 파악하기 위해 2018년 1월부터 2022년 8월까지 월별 모니터링과 3차원 스캔 측량, 전기 비저항탐사를 실시하였다. 약 5년간 주상절리대에서 떨어져 나온 낙석은 총 3,231개이며, 낙석의 크기(길이)는 20cm 이하가 1,521개(47%)로 가장 많고, 20~30cm는 978(30.3%), 30cm 이상은 732개(22.7%)가 발생하였다. 2018년부터 연도별 낙석 발생 개수는 감소하는 반면, 30cm 이상의 낙석 발생 빈도는 증가하는 경향을 보인다. 대규모의 낙석은 해빙기(3월~4월)와 장마기(6월~7월)에 주로 발생하였으며, 누적강우량과 낙석 발생 관계 분석에서 3~4일 간의 누적강우량도 낙석 발생에 밀접한 관계가 있는 것으로 나타났다. 주상절리 내의 사면물질(충진물)을 대상으로 한 XRD 분석에서 팽창성 점토광물인 스멕타이트와 일라이트가 관찰되었으며 전기비저항탐사에서 단층파쇄대가 존재하는 것이 확인되었다. 또한, 확인된 단층파쇄대와 3D 정밀측정을 통해 분석된 최대 침식지점이 무인카메라에서 관찰된 주 낙석 발생 지점과 일치하였다. 따라서 포항 달전리 주상절리의 낙석 발생 주요 원인은 내부요인(단층파쇄대와 절리의 발달, 암석의 풍화, 팽창성 점토광물의 존재)과 외부요인(강우량, 해빙기 급속한 융해현상)이 복합적으로 작용하여 대규모 낙석을 발생하는 것으로 판단된다. 반면, 일부에서 지속적으로 제기 되었던 포항-경주 지진은 주요 원인이 아님이 확인되었다.

Keywords

Acknowledgement

이 연구를 위해 현지조사에 많은 도움을 준 국립문화재연구원의 정승호연구사, 김태형박사, 유영완연구원과 거창화강석연구센터의 김건기박사, 강무환연구원 및 포항시청 관계자들께 감사드리며, 심도 깊은 논문이 될 수 있도록 유익한 조언을 해주신 심사위원님께 감사드린다. 이 연구는 국립문화재연구원의 지질분야 연구과제(NRICH2205-A15F-1)와 문화재청(포항시)의 천연기념물 포항 달전리 주상절리 모니터링 사업의 일환으로 진행되었다.

References

  1. Ahn, K.S. (2014) Distribution and Petrology of the Columnar Joint in South Korea. Journal of the Petrological Society of Korea, v.23(2), p.45-59. (in Korean With English abstract). doi: 10.7854/JPSK.2014.23.2.45
  2. Ahn, K.S., Hun, M. and Son, J.M. (2014) Geological history and landscape of Mudeungsan National Park. Journal of the Geological Society of Korea, v.50(1), p.91-105. (in Korean With English abstract). doi: 10.14770/jgsk.2014.50.1.91
  3. Bogoslovsky, V.A. and Ogilvy, A.A. (1977) Geophysical method for the investigation of landslides. Geophys., v.42(3), p.562-571. doi: 10.1190/1.1440727
  4. Brand, E.W. (1985) Predicting the Performance of Residual Soil Slope. Proc of 11th Inter. Conf. on Soil Mech. and Founf. Eng. San Francisco. p.2541-2573.
  5. Caine, N. (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler 62. p.23-27. doi: 10.1080/04353676.1980.11879996
  6. Cho, A.H., Joung, I.S., Jeong, J.Y., Song, S.Y. and Nam, M.J. (2022) A Review on Past Cases of Geophysical Explorations for Assessment of Slope Stability. Econ. Environ. Geol., v.55(1), p.111-125. doi: 10.9719/EEG.2022.55.1.111
  7. Cho, Y.H., Lim, D.S. and Chun, B.S. (2010) A Case Study on the Slope Collapse and Reinforcement Method of the Phyllite Slope. Korean Geotechnical Society, v.11(8), p.83-93.
  8. Dai, F.C. and Lee, C.F. (2001) Frequency-volume Relation and Prediction of Rainfall-induced Landslides. Engineering Geology, v.59, p.253-266. doi: 10.1016/S0013-7952(00)00077-6
  9. Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2013) Soil creep effects on ground lateral deformation and pore water pressure under embankments. Geomech. Geoeng., v.8(2), p.107-124. doi: 10.1080/17486025.2012.727037
  10. Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M. and Salvati, P. (2004) Landslides Triggered by the 23 Novemver 2000 Rainfall Event in the Imperia PROVINCE, Western Liguria, Italy. Engineering Geology, v.73, p.229-245. doi: 10.1016/j.enggeo.2004.01.006
  11. Hwang, S.K. and Kim, J.H. (2009) Topographical Landscapes and their Controlling Geological Factors in the Juwangsan National Park: Welding Facie and Columnar Joints. Journal of the Petrological Society of Korea, v.18(3), p.195-209 (in Korean With English abstract).
  12. Im, O.B. (2009) A Study on Characteristics of Landslide and Restoration Works in Damaged Area by Heavy Rainfall Focused on Hongcheon area in Gangwondo. Master D. Diss., Kangwon National University, Korea, 88p.
  13. Jeon, S.G. and Baek, S.C. (2019) Comparison of Prediction Models for Identification of Areas at Risk of Landslides due to Earthquake and Rainfall. Journal of the Korean Geo-Environmental Society, v.20(6), p.15-22. (in Korean With English abstract). doi: 10.14481/jkges.2019.20.6.15
  14. Jin, K.M. and Kim, Y.S. (2010) Study on development and value for geotourism of horizontal columnar joints at the Jeongja beach area, Ulsan and Eupchon beach area, Gyeongju. Journal of the Geological Society of Korea, v.46(4), p.413-427 (in Korean With English abstract).
  15. Kim, J.H., Kang, M.H., Kong, D.Y. and Jwa, Y.J. (2021) A Study on Evaluation of slope Stability and Range of Rockfall Hazard of Daljeon-ri Columnar Joint in Pohang, Korea. Journal of Conservation Science, v.37(5), p.505-515, (in Korean With English abstract). doi: 10.12654/JCS.2021.37.5.08
  16. Kang, W.S., Ma, H.S. and Jeon, K.S. (2016) Influences of Cumulative Number of Days of Rainfall on Occurrence of Landslide. Journal of Forest Society, v.105(2), p.216-222.
  17. Ko, C.S., Kim, m.r.c., No, J.D. and Kang, S.S. (2016) Physical and mechanical properties on Ipseok-dae columnar joints of Mt. Mudeung National Park. The Journal of Engineering Geology, v.26(3), p.383-392. (in Korean With English abstract). doi: 10.9720/kseg.2016.3.383
  18. Koh, J.S., Yun, S.H. and Hong, H.C. (2005) Morphology and petrology of Jisagae columnar joint on the Daepodong basalt in Jeju Island, Korea. Journal of the Petrological Society of Korea, v.14(4), p.212-225 (in Korean With English abstract).
  19. Lee, S.R., Kim, Y.S., Kim, N.J. and Ahn, K.H. (2008) Analysis of Relationships Between Topography/Geology and Groundwater Yield Properties at Pohang Using GIS. Econ. Environ. Geol., v.41(1), p.115-131. (in Korean With English abstract).
  20. Marui, H., Sato, O. and Watanabe, N. (1997) Gamahara Torrent Debris Flow on 6 December 1996. Japan Landslide News 10, p.4-6.
  21. Moon, G.B., You, Y.M., Yun, H.S., Suh, Y.H., Seo, Y.S. and Baek, Y. (2014) Analysis of Magnitude and Behavior of Rockfall for Volcanic Rocks in Ulleung-Do. The Journal of Engineering Geology, v.24(3), p.373-381. (in Korean With English abstract). doi: 10.9720/kseg.2014.3.373
  22. Park, N.S. (2008) A Study on Characteristics of Landslide of Debris Flow in Gangwondo. Master D. Diss., Kangwon National University, Korea, 96p.
  23. Reid-Soukup, D.A. and Ulery, A.L. (2002) Smectite, In; Dixon, J.B., and Schulze, D.G., 2002, Soil Mineralogy with Environmental Applications, v.7, p.467-499.
  24. Sassa, K. (1997) Landslide Triggered Debris Flow: Mechanism of Undrained Loading of Torrent Deposits (Special Issue on Landslide-Triggered Debris Flow). Monthly Journal Chikyu (Earth), v.19(10), p.652-660.
  25. Shin, H.O., Kim, M.I. and Yoon, W.J. (2018) Application of geophysical exploration technique to the identification of active weak zones in large scale mountainous region. Geophysics and Geophysical Exploration, v.21(3), p.162-170. doi: 10.7582/GGE.2018.21.3.162
  26. Sohn, Y.J., Choi, S.C. and Ryu, I.-C. (2020) Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula. Econ. Environ. Geol., v.53(5), p.597-608. doi: 10.9719/EEG.2020.53.5.597
  27. Song, C.W., Kim, H.J., Kim, J.S., Kim, M.C. and Son, M. (2015) Stratigraphic Implication of the Daljeon Basalt in the Miocene Pohang Basin, SE Korea. The Journal of the Petrological Society of Korea, v.24, p.323-335. (in Korean With English abstract). doi: 10.7854/JPSK.2015.24.4.323
  28. Tonelli, G., Veneri, F., Mattioli, M. and Paletta, C. (2019) The role of a bentonitic layer on slope stability in bedded limestone: the case study of the December 2004 Ca' Madonna Quarry rock slide (Umbria-Marche Apennines, Central Italy). Italian Journal of Geosciences, v.138, p.56-65. doi: 10.3301/IJG.2018.26
  29. Yune, C.Y., Jun, K.J., Kim, K.S., Kim, G.H. and Lee, S.W. (2010) Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction. Journal of Korea Geotechnical Society, v.26(10), p.27-38.
  30. Zhang, Q., Hu, J., Du. Y., Gao, Y. and Li, J. (2021) A laboratory and field-monitoring experiment on the ability of anti-slide piles to prevent buckling failures in bedding slopes. Environmental Earth Sciences, v.80(44), p.1-13. doi: 10.1007/s12665-020-09288-6