DOI QR코드

DOI QR Code

철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips

  • 정새벽 (부산대학교 건축공학과) ;
  • 정동혁 (부산대학교 건축공학과)
  • Jeong, Saebyeok (Department of Architecture Engineering, Pusan National University) ;
  • Jung, Donghyuk (Department of Architecture Engineering, Pusan National University)
  • 투고 : 2022.06.24
  • 심사 : 2022.08.09
  • 발행 : 2022.10.31

초록

본 논문에서는 철계형상기억합금(Fe SMA) 스트립으로 능동구속된 콘크리트 기둥의 실험적, 해석적 연구결과를 제시한다. Fe SMA과 탄소섬유보강시트(CFRP)로 각각 구속된 콘크리트 공시체의 압축실험을 통해 형상기억합금 기반 능동구속기법의 효과성을 평가하였다. 실험결과, Fe SMA 스트립으로 구속된 콘크리트 공시체가 낮은 구속력에도 불구하고 CFRP 시트로 구속된 공시체에 비해 더 우수한 변형능력을 가지는 것으로 밝혀졌다. 실험을 통해 얻은 구속된 콘크리트의 압축거동 결과를 이용해 소성힌지 영역이 각각 Fe SMA 스트립과 CFRP 시트로 보강된 콘크리트 기둥의 유한요소모델을 구축하였다. 기존 수행된 콘크리트 기둥의 수평반복가력 실험결과를 바탕으로 구축된 기둥 모델을 검증하였고, 각각의 기둥 모델에 대한 수평반복가력 해석을 수행하였다. 해석결과, Fe SMA 스트립으로 보강된 콘크리트 기둥이 CFRP 시트로 보강된 기둥모델에 비해 변형, 에너지 소산능력 향상에 효과적임을 확인하였다.

This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

키워드

과제정보

본 연구는 2019학년도 부산대학교 신임교수연구 정착금 지원과 2021년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었음(NRF-2021R1F1A1062457).

참고문헌

  1. Andrawes, B., Shin, M., Wierschem, N. (2010) Active Confinement of Reinforced Concrete Bridge Columns using Shape Memory Alloys, J. Bridge Eng., 15(1), pp.81-89. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000038
  2. Architectural Institute of Korea (2018) A Study of Earthquake Prevention Measures for Earthquake Vulnerable Buildings such as Piloti-Final Report, Aik-R-2018-848, Ministry of Land, Infrastructure and Transport, Korea, pp.2-17.
  3. Chaii, Y.H., Priestley, M.N., Seible, F. (1991) Seismic Retrofit of Circular Bridge Columns for Enhanced Flexural Performance, Struct. J., 88(5), pp.572-584.
  4. Chen, Q. (2015) Experimental Testing and Constitutive Modeling of Concrete Confined with Shape Memory Alloys, Doctoral Dissertation, University of Illinois at Urbana-Champaign.
  5. Choi, E., Chung, Y.S., Choi, D.H., Desroches, R. (2012) Seismic Protection of Lap-Spliced RC Columns using SMA Wire Jackets, Mag. Concr. Res., 64(3), pp.239-252. https://doi.org/10.1680/macr.10.00181
  6. Czaderski, C., Shahverdi, M., Bronnimann, R., Leinenbach, C., Motavalli, M. (2014) Feasibility of Iron-Based Shape Memory Alloy Strips for Prestressed Strengthening of Concrete Structures, Constr. & Build. Mater., 56, pp.94-105. https://doi.org/10.1016/j.conbuildmat.2014.01.069
  7. Elnashai, A., Sarno, L.D. (2008) Fundamentals of Earthquake Engineering, John Wiley and Sons, Inc.
  8. Hong, K.N., Yeon, Y.M., Shim, W.B., Kim, D.H. (2020) Recovery behavior of Fe-based Shape Memory Alloys under Different Restraints, Appl. Sci., 10(10), p.3441. https://doi.org/10.3390/app10103441
  9. Janke, L., Czaderski, C., Motavalli, M., Ruth, J. (2005) Applications of Shape Memory Alloys in Civil Engineering StructuresOverview, Limits and New Ideas, Mater. & Struct., 38(5), pp.578-592.
  10. Jung, D., Wilcoski, J., Andrawes, B. (2018) Bidirectional Shake Table Testing of RC Columns Retrofitted and Repaired with Shape Memory Alloy Spirals, Eng. Struct., 160, pp.171-185. https://doi.org/10.1016/j.engstruct.2017.12.046
  11. Jung, D.H., Jeong, S.B. (2021) Analytical Modeling of RC Columns Actively Confined with Shape Memory Alloy, J. Korean Soc. Adv. Compos. Struct., 12(5), pp.1-8. https://doi.org/10.11004/kosacs.2021.12.5.001
  12. Karabinis, A.I., Rousakis, T.C. (2002) Concrete Confined by FRP Material: A Plasticity Approach, Eng. Struct., 24(7), pp.923-932. https://doi.org/10.1016/S0141-0296(02)00011-1
  13. Karsan, I.D., Jirsa, J.O. (1969) Behavior of Concrete under Compressive Loadings, J. Struct. Div., 95(12), pp.2543-2564. https://doi.org/10.1061/JSDEAG.0002424
  14. Kent, D.C., Park, R. (1971) Flexural Members with Confined Concrete, Journal Of The Structural Division, 97(7), pp. 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
  15. Mander, J.B., Priestley, M.J., Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete, J. Struct. Eng., 114(8), pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  16. Mckenna, F., Fenves, G.L., Scott, M.H. (2000) Open System for Earthquake Engineering Simulation, University of California, Berkeley, CA.
  17. Menegotto, M., Pinto, P. (1973) Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames including Changes in Geometry and Non-Elastic behavior of Elements, In Iabse Symposium on Resistance and Ultimate Deformability of Structure, Acted on by Well-Defined Repeated Loads, Lisbon: Acmpress, 15, p.22.
  18. Mirmiran, A., Shahawy, M. (1997) Behavior of Concrete Columns Confined by Fiber Composites, J. Struct. Eng., 123(5), pp.583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)
  19. Moghaddam, H., Samadi, M., Pilakoutas, K., Mohebbi, S. (2010) Axial Compressive Behavior of Concrete Actively Confined by Metal Strips; Part A: Experimental Study, Mater. & Struct., 43(10), pp.1369-1381. https://doi.org/10.1617/s11527-010-9588-6
  20. Park, R. (1988) Ductility Evaluation From Laboratory and Analytical Testing, In Proceedings of The 9Th World Conference on Earthquake Engineering, 8, pp. 605-616.
  21. Park, R., Negel Priestly, M.J., Gill, W.D. (1982) Ductility of Square-Confined Concrete Columns, J. Struct. Div., 108(4), pp.929-950. https://doi.org/10.1061/JSDEAG.0005933
  22. Priestley, M.N., Seible, F., Xiao, Y., Verma, R. (1994) Steel Jacket Retrofitting of Reinforced Concrete Bridge Columns for Enhanced Shear Strength-Part 1: Theoretical Considerations and Test Design, Struct. J., 91(4), pp.394-405.
  23. Saatcioglu, M., Yalcin, C. (2003) External Prestressing Concrete Columns for Improved Seismic Shear Resistance, J. Struct. Eng., 129(8), pp.1057-1070. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1057)
  24. Scott, M.H., Fenves, G.L. (2006) Plastic Hinge Integration Methods For Force-Based Beam-Column Elements, J. Struct. Eng., 132(2), pp.244-252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)
  25. Shajil, N., Srinivasan, S.M., Santhanam, M. (2013) Self-Centering of Shape Memory Alloy Fiber Reinforced Cement Mortar Members Subjected to Strong Cyclic Loading, Mater. & Struct., 46(4), pp.651-661. https://doi.org/10.1617/s11527-012-9923-1
  26. Shin, M., Andrawes, B. (2011) Lateral Cyclic behavior of Reinforced Concrete Columns Retrofitted with Shape Memory Spirals and FRP Wraps, J. Struct. Eng., 137(11), pp.1282-1290. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000364
  27. Shin, M., Andrawes, B. (2010) Experimental Investigation of Actively Confined Concrete using Shape Memory Alloys, Eng. Struct., 32(3), pp. 656-664. https://doi.org/10.1016/j.engstruct.2009.11.012
  28. Spacone, E., Filippou, F.C., Taucer, F.F. (1996) Fibre BeamColumn Model for Non-Linear Analysis of R/C Frames: Part I. Formulation, Earthq. Eng. & Struct. Dyn., 25(7), pp.711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  29. Suhail, R., Amato, G., Mccrum, D.P. (2020) Active and Passive Confinement of Shape Modified Low Strength Concrete Columns using SMA and FRP Systems, Compos. Struct., 251, p.112649. https://doi.org/10.1016/j.compstruct.2020.112649
  30. Xiao, Q.G., Teng, J.G., Yu, T. (2010) Behavior and Modeling of Confined High-Strength Concrete, Journal of Composites for Construction, 14(3), pp.249-259. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070