DOI QR코드

DOI QR Code

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary

강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰

  • Im, Sungbin (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Bu, Sang Don (Department of Physics, Jeonbuk National University) ;
  • Jeong, Chang Kyu (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 임성빈 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 부상돈 (전북대학교 물리학과) ;
  • 정창규 (전북대학교 신소재공학부 전자재료공학전공)
  • Received : 2022.08.12
  • Accepted : 2022.08.24
  • Published : 2022.11.01

Abstract

Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Keywords

Acknowledgement

본 연구는 2022년 과학기술정보통신부 재원으로 한국연구재단의 지원(2022R1A2C4002037, 2022R1A4A3032923)을 받아 수행된 결과입니다.

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezolectric Ceramics (1971). [DOI: https://doi.org/10.1016/B978-0-12-379550-2.X5001-7]
  2. W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer Science & Business Media, 2008) 114.
  3. H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969). [DOI: https://doi.org/10.1143/JJAP.8.975]
  4. G. M. Sessler, J. Acoust. Soc. Am., 70, 1596 (1981). [DOI: https://doi.org/10.1121/1.387225]
  5. E. Fukada and T. Furukawa, Ultrasonics, 19, 31 (1981). [DOI: https://doi.org/10.1016/0041-624x(81)90030-5]
  6. A. J. Lovinger, Science, 220, 1115 (1983). [DOI: https://doi.org/10.1126/science.220.4602.1115]
  7. T. Furukawa, IEEE T. Electr Insul., 24, 375 (1989). [DOI: https://doi.org/10.1109/14.30878]
  8. E. Fukada, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control., 47, 1277 (2000). [DOI: https://doi.org/10.1109/58.883516]
  9. V. V. Kochervinskii, Crystallography Reports, 48, 649 (2003). [DOI: https://doi.org/10.1134/1.1595194]
  10. S. B. Lang and S. Muensit, Applied Physics A-Materials Science & Processing, 85, 125 (2006). [DOI: https://doi.org/10.1007/s00339-006-3688-8]
  11. E. Fukada, IEEE T. Dielect El In., 13, 1110 (2006). [DOI: https://doi.org/10.1109/Tdei.2006.1714937]
  12. K. S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct., 23, 033001 (2014). [DOI: https://doi.org/10.1088/0964-1726/23/3/033001]
  13. T. D. Usher, K. R. Cousins, R. W. Zhang, and S. Ducharme, Polym. Int., 67, 790 (2018). [DOI: https://doi.org/10.1002/pi.5584]
  14. S. Bauer, IEEE T. Dielect El In., 13, 953 (2006). [DOI: https://doi.org/10.1109/Tdei.2006.1714917]
  15. G. Laroche, Y. Marois, R. Guidoin, M. W. King, L. Martin, T. How, and Y. Douville, J. Biomed. Mater. Res., 29, 1525 (1995). [DOI: https://doi.org/10.1002/jbm.820291209]
  16. F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47, 1363 (2000). [DOI: https://doi.org/10.1109/58.883525]
  17. B. Ameduri, Chem. Rev., 109, 6632 (2009). [DOI: https://doi.org/10.1021/cr800187m]
  18. R. Calio, U. B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. D. Petris, and C. M. Oddo, Sensors, 14, 4755 (2014). [DOI: https://doi.org/10.3390/s140304755]
  19. T. Soulestin, V. Ladmiral, F.D.D. Santos, and B. Ameduri, Prog. Polym. Sci., 72, 16 (2017). [DOI: https://doi.org/10.1016/j.progpolymsci.2017.04.004]
  20. G. Z. Zhang, M. Y. Li, H. L. Li, Q. Wang, and S. L. Jiang, Energy Technology, 6, 791 (2018). [DOI: https://doi.org/10.1002/ente.201700622]
  21. M. T. Chorsi, E. J. Curry, H. T. Chorsi, R. Das, J. Baroody, P. K. Purohit, H. Ilies, and T. D. Nguyen, Adv. Mater., 31, 1802084(2019). [DOI: https://doi.org/10.1002/adma.201802084]
  22. C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, Nano Lett., 10, 726 (2010). [DOI: https://doi.org/10.1021/nl9040719]
  23. C. Frias, J. Reis, F. Capela e Silva, J. Potes, J. Simoes, and A. T. Marques, J. Biomech., 43, 1061 (2010). [DOI: https://doi.org/10.1016/j.jbiomech.2009.12.010]
  24. T. Sharma, S. S. Je, B. Gill, and J.X.J. Zhang, Sensor. Actuat. A: Phys., 177, 87 (2012). [DOI: https://doi.org/10.1016/j.sna.2011.08.019]
  25. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, Nat. Commun., 4, 1633(2013). [DOI: https://doi.org/10.1038/ncomms2639]
  26. R. A. Whiter, V. Narayan, and S. Kar-Narayan, Adv. Energy. Mater., 4, 1400519 (2014). [DOI: https://doi.org/10.1002/aenm.201400519]
  27. L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis, and D. Pisignano, Adv. Mater., 26, 7574 (2014). [DOI: https://doi.org/10.1002/adma.201403169]
  28. M. Hoop, X. Z. Chen, A. Ferrari, F. Mushtaq, G. Ghazaryan, T. Tervoort, D. Poulikakos, B. Nelson, and S. Pane, Sci. Rep., 7, 4028 (2017). [DOI: https://doi.org/10.1038/s41598-017-03992-3]
  29. Y. S. Choi, Q. S. Jing, A. Datta, C. Boughey, and S. KarNarayan, Energy Environ. Sci., 10, 2180 (2017). [DOI: https://doi.org/10.1039/c7ee01292f]
  30. Y. Zhang, W. L. Zhu, C. K. Jeong, H. J. Sun, G. Yang, W. Chen, and Q. Wang, RSC Adv., 7, 32502 (2017). [DOI: https://doi.org/10.1039/c7ra05605b]
  31. A. Datta, Y. S. Choi, E. Chalmers, C. L. Ou, and S. KarNarayan, Adv. Funct. Mater., 27, 1604262 (2017). [DOI: https://doi.org/10.1002/adfm.201604262]
  32. S. M. Damaraju, Y. Shen, E. Elele, B. Khusid, A. Eshghinejad, J. Li, M. Jaffe, and T. L. Arinzeh, Biomaterials, 149, 51 (2017). [DOI: https://doi.org/10.1016/j.biomaterials.2017.09.024]
  33. P. J. Gouveia, S. Rosa, L. Ricotti, B. Abecasis, H. V. Almeida, L. Monteiro, J. Nunes, F. S. Carvalho, M. Serra, S. Luchkin, A. L. Kholkin, P. M. Alves, P. J. Oliveira, R. Carvalho, A. Menciassi, R. P. das Neves, and L. S. Ferreira, Biomaterials, 139, 213 (2017). [DOI: https://doi.org/10.1016/j.biomaterials.2017.05.048]
  34. A. C. Wang, Z. Liu, M. Hu, C. C. Wang, X. D. Zhang, B. J. Shi, Y. B. Fan, Y. G. Cui, Z. Li, and K. L. Ren, Nano Energy, 43, 63(2018). [DOI: https://doi.org/10.1016/j.nanoen.2017.11.023]
  35. K. Omote, H. Ohigashi, and K. Koga, J. Appl. Phys., 81, 2760(1997). [DOI: https://doi.org/10.1063/1.364300]
  36. J. Gomes, J. S. Nunes, V. Sencadas, and S. Lanceros-Mendez, Smart Mater. Struct., 19, 065010 (2010). [DOI: https://doi.org/10.1088/0964-1726/19/6/065010]
  37. M. Broadhurst, G. Davis, J. McKinney, and R. Collins, J. Appl. Phys., 49, 4992 (1978). [DOI: https://doi.org/10.1063/1.324445]
  38. M. G. Broadhurst and G. T. Davis, Ferroelectrics, 60, 3 (1984). [DOI: https://doi.org/10.1080/00150198408017504]
  39. T. Wang, J. Appl. Phys., 50, 6091 (1979). [DOI: https://doi.org/10.1063/1.325777]
  40. Y. Wada and R. Hayakawa, Ferroelectrics, 32, 115 (1981). [DOI: https://doi.org/10.1080/00150198108238681]
  41. S. Tasaka and S. Miyata, Ferroelectrics, 32, 17 (1981). [DOI: https://doi.org/10.1080/00150198108238668]
  42. H. Dvey-Aharon, T. Sluckin, and P. Taylor, Ferroelectrics, 32, 25 (1981). [DOI: https://doi.org/10.1080/00150198108238669]
  43. Y. Higashihata, J. Sako, and T. Yagi, Ferroelectrics, 32, 85(1981). [DOI: https://doi.org/10.1080/00150198108238678]
  44. M. Oshiki and E. Fukada, J. Mater. Sci., 10, 1 (1975). [DOI: https://doi.org/10.1007/Bf00541025]
  45. T. Furukawa and N. Seo, Jpn. J. Appl. Phys., 1 29, 675 (1990). [DOI: https://doi.org/10.1143/Jjap.29.675]
  46. M. P. Silva, C. M. Costa, V. Sencadas, A. J. Paleo, and S. Lanceros-Mendez, J. Polym. Res., 18, 1451 (2011). [DOI: https://doi.org/10.1007/s10965-010-9550-x]
  47. V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, and A. L. Kholkin, J. Mol. Model., 19, 3591 (2013). [DOI: https://doi.org/10.1007/s00894-013-1891-z]
  48. I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjaer, D. Zhao, T. Lenz, Y. Gu, P.W.M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, Nat. Mater., 15, 78 (2016). [DOI: https://doi.org/10.1038/nmat4423]
  49. M. E. Lines, A. M. Glass, A. M. Glass, and P. Oxford University, Principles and applications of ferroelectrics and related materials (Clarendon, Oxford, 2001), The International series of monographs on physics.
  50. Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu, J. Bernholc, and Q. Wang, Nature, 562, 96 (2018). [DOI: https://doi.org/10.1038/s41586-018-0550-z]
  51. H. Fu and R. E. Cohen, Nature 403, 281 (2000). [DOI: https://doi.org/10.1038/35002022]
  52. R. E. Cohen, Nature 562, 48 (2018). [DOI: https://doi.org/10.1038/d41586-018-06865-5]
  53. R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, Polym. J., 3, 600 (1972). [DOI: https://doi.org/10.1295/polymj.3.600]
  54. R. Kolda and J. Lando, J. Macromol. Sci., Part B: Phys., 11, 21(1975). [DOI: https://doi.org/10.1080/ 00222347508217853]
  55. M. Kobayashi, K. Tashiro, and H. Tadokoro, Macromolecules, 8, 158 (1975). [DOI: https://doi.org/10.1021/ma60044a013]
  56. G. T. Davis, J. E. Mckinney, M. G. Broadhurst, and S. C. Roth, J. Appl. Phys., 49, 4998 (1978). [DOI: https://doi.org/10.1063/1.324446]
  57. Y. Takahashi and H. Tadokoro, Macromolecules, 13, 1317(1980). [DOI: https://doi.org/10.1021/ma60077a057]
  58. M. A. Bachmann, W. L. Gordon, J. L. Koenig, and J. B. Lando, J. Appl. Phys., 50, 6106 (1979). [DOI: https://doi.org/10.1063/1.325780]
  59. N. C. Banik, F. P. Boyle, T. J. Sluckin, P. L. Taylor, S. K. Tripathy, and A. J. Hopfinger, Phys. Rev. Lett., 43, 456 (1979). [DOI: https://doi.org/10.1103/PhysRevLett.43.456]
  60. M. Bachmann, W. L. Gordon, S. Weinhold, and J. B. Lando, J. Appl. Phys., 51, 5095 (1980). [DOI: https://doi.org/10.1063/1.327425]
  61. S. Weinhold, M. H. Litt, and J. B. Lando, Macromolecules, 13, 1178 (1980). [DOI: https://doi.org/10.1021/ma60077a029]
  62. A. J. Lovinger, Macromolecules, 14, 322 (1981). [DOI: https://doi.org/10.1021/ma50003a018]
  63. M. Li, H. J. Wondergem, M. J. Spijkman, K. Asadi, I. Katsouras, P. W. Blom, and D. M. de Leeuw, Nat. Mater., 12, 433 (2013). [DOI: https://doi.org/10.1038/nmat3577]
  64. J. Martin, D. Zhao, T. Lenz, I. Katsouras, D. M. de Leeuw, and N. Stingelin, Mater. Horiz., 4, 408 (2017). [DOI: https://doi.org/10.1039/c7mh00007c]
  65. T. Furukawa, M. Date, E. Fukada, Y. Tajitsu, and A. Chiba, Jpn. J. Appl. Phys., 19, L109 (1980). [DOI: https://doi.org/10.1143/JJAP.19.L109]
  66. T. Yagi, M. Tatemoto, and J.-I. Sako, Polym. J., 12, 209 (1980). [DOI: https://doi.org/10.1295/polymj.12.209]
  67. T. Furukawa, G. E. Johnson, H. E. Bair, Y. Tajitsu, A. Chiba, and E. Fukada, Ferroelectrics, 32, 61 (1981). [DOI: https://doi.org/10.1080/00150198108238674]
  68. T. Yamada and T. Kitayama, J. Appl. Phys., 52, 6859 (1981). [DOI: https://doi.org/10.1063/1.328679]
  69. T. Yamada, T. Ueda, and T. Kitayama, J. Appl. Phys., 52, 948(1981). [DOI: https://doi.org/10.1063/1.328783]
  70. A. J. Lovinger, G. T. Davis, T. Furukawa, and M. G. Broadhurst, Macromolecules, 15, 323 (1982). [DOI: https://doi.org/10.1021/ma00230a024]
  71. G. T. Davis, T. Furukawa, A. J. Lovinger, and M. G. Broadhurst, Macromolecules, 15, 329 (1982). [DOI: https://doi.org/10.1021/ma00230a025]
  72. H. Ohigashi and K. Koga, Jpn. J. Appl. Phys., 2 21, L455 (1982). [DOI: https://doi.org/10.1143/Jjap.21.L455]
  73. K. Kimura and H. Ohigashi, Appl. Phys. Lett., 43, 834 (1983). [DOI: https://doi.org/10.1063/1.94512]
  74. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Polymer, 25, 195 (1984). [DOI: https://doi.org/10.1016/0032-3861(84)90326-4]
  75. T. Furukawa, M. Ohuchi, A. Chiba, and M. Date, Macromolecules, 17, 1384 (1984). [DOI: https://doi.org/10.1021/ma00137a015]
  76. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Ferroelectrics, 57, 297 (1984). [DOI: https://doi.org/10.1080/00150198408012770]
  77. Y. Murata and N. Koizumi, Polym. J., 17, 385 (1985). [DOI: https://doi.org/10.1295/polymj.17.385]
  78. K. Tashiro and M. Kobayashi, Phase. Transit., 18, 213 (1989). [DOI: https://doi.org/10.1080/01411598908206864]
  79. K. Tashiro and M. Kobayashi, Polymer, 27, 667 (1986). [DOI: https://doi.org/10.1016/0032-3861(86)90122-9]
  80. T. Furukawa, Phase. Transit., 18, 143 (1989). [DOI: https://doi.org/10.1080/01411598908206863]
  81. K. J. Kim, N. M. Reynolds, and S. L. Hsu, Macromolecules, 22, 4395 (1989). [DOI: https://doi.org/10.1021/ma00202a001]
  82. T. Furukawa, Y. Tajitsu, X. Zhang, and G. E. Johnson, Ferroelectrics, 135, 401 (1992). [DOI: https://doi.org/10.1080/00150199208230041]
  83. E. Bellet-Amalric and J. F. Legrand, Eur. Phys. J. B 3, 225(1998). [DOI: https://doi.org/10.1007/s100510050307]
  84. Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, Nat. Mater., 10, 296 (2011). [DOI: https://doi.org/10.1038/nmat2951]
  85. Y. Zhang, W. Jie, P. Chen, W. Liu, and J. Hao, Adv. Mater., 30, e1707007 (2018). [DOI: https://doi.org/10.1002/adma.201707007]
  86. S. Horiuchi and Y. Tokura, Nat. Mater., 7, 357 (2008). [DOI: https://doi.org/10.1038/nmat2137]
  87. R. C. Naber, K. Asadi, P. W. Blom, D. M. de Leeuw, and B. de Boer, Adv. Mater., 22, 933 (2010). [DOI: https://doi.org/10.1002/adma.200900759]
  88. Y. Guo, G. Yu, and Y. Liu, Adv. Mater., 22, 4427 (2010). [DOI: https://doi.org/10.1002/adma.201000740]
  89. T. J. Reece, S. Ducharme, A. V. Sorokin, and M. Poulsen, Appl. Phys. Lett., 82, 142 (2003). [DOI: https://doi.org/10.1063/1.1533844]
  90. S. Ducharme, T. J. Reece, C. M. Othon, and R. K. Rannow, IEEE T Device Mat. Re., 5, 720 (2005). [DOI: https://doi.org/10.1109/Tdmr.2005.860818]
  91. B. B. Tian, Y. Liu, L. F. Chen, J. L. Wang, S. Sun, H. Shen, J. L. Sun, G. L. Yuan, S. Fusil, V. Garcia, B. Dkhil, X. J. Meng, and J. H. Chu, Sci. Rep., 5, 18297 (2016). [DOI: https://doi.org/10.1038/srep18297]
  92. B. B. Tian, J. L. Wang, S. Fusil, Y. Liu, X. L. Zhao, S. Sun, H. Shen, T. Lin, J. L. Sun, C. G. Duan, M. Bibes, A. Barthelemy, B. Dkhil, V. Garcia, X. J. Meng, and J. H. Chu, Nat. Commun., 7, 11502 (2016). [DOI: https://doi.org/10.1038/ncomms11502]
  93. X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, and J. Chu, Adv. Mater., 27, 6575 (2015). [DOI: https://doi.org/10.1002/adma.201503340]
  94. A. Laudari, A. R. Mazza, A. Daykin, S. Khanra, K. Ghosh, F. Cummings, T. Muller, P. F. Miceli, and S. Guha, Phys. Rev. Appl., 10, 014011 (2018). [DOI: https://doi.org/10.1103/PhysRevApplied.10.014011]
  95. C. De Rosa and F. Auriemma, Crystals and crystallinity in polymers: diffraction analysis of ordered and disordered crystals (John Wiley & Sons, 2013).
  96. Y. Takahashi, M. Kohyama, Y. Matsubara, H. Iwane, and H. Tadokoro, Macromolecules, 14, 1841 (1981). [DOI: https://doi.org/10.1021/ma50007a050]
  97. U. Gedde, Polymer physics (Springer Science & Business Media, 1995).
  98. L. E. Cross, S. J. Jang, R. E. Newnham, S. Nomura, and K. Uchino, Ferroelectrics, 23, 187 (1980). [DOI: https://doi.org/10.1080/00150198008018801]
  99. J. I. Scheinbeim, J. Appl. Phys., 52, 5939 (1981). [DOI: https:// doi.org/10.1063/1.328523]
  100. R. Hayakawa and Y. Wada, Adv. Polym. Sci., 11, 1 (1973). [DOI: https://doi.org/10.1007/3-540-06054-5_10]
  101. K. I. Nakamura and Y. Wada, J. Polym. Sci., Part A-2: Polym. Chem., 9, 161 (1971). [DOI: https://doi.org/10.1002/pol.1971.160090111]
  102. F. Oliveira, Y. Leterrier, J. A. Manson, O. Sereda, A. Neels, A. Dommann, and D. Damjanovic, J. Polym. Sci., Part B-Polym. Phys., 52, 496 (2014). [DOI: https://doi.org/10.1002/polb.23443]
  103. Y. Y. Choi, P. Sharma, C. Phatak, D. J. Gosztola, Y. Liu, J. Lee, B. Lee, J. Li, A. Gruverman, S. Ducharme, and S. Hong, ACS Nano, 9, 1809 (2015). [DOI: https://doi.org/10.1021/nn5067232]
  104. A. V. Bune, C. X. Zhu, S. Ducharme, L. M. Blinov, V. M. Fridkin, S. P. Palto, N. G. Petukhova, and S. G. Yudin, J. Appl. Phys., 85, 7869 (1999). [DOI: https://doi.org/10.1063/1.370598]
  105. J. Qian, S. Jiang, Q. Wang, S. Zheng, S. Guo, C. Yi, J. Wang, X. Wang, K. Tsukagoshi, Y. Shi, and Y. Li, Sci. Rep., 8, 532 (2018). [DOI: https://doi.org/10.1038/s41598-017-18845-2]
  106. T. Furukawa and J. X. Wen, Jpn. J. Appl. Phys. 2 23, L677(1984). [DOI: https://doi.org/10.1143/Jjap.23.L677]
  107. T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashina, and M. Date, J. Appl. Phys., 56, 829 (1984). [DOI: https://doi.org/10.1063/1.334016]
  108. S. B. Liu, Z. Cui, P. Fu, M. Y. Liu, Y. C. Zhang, R. F. Jia, and Q. X. Zhao, Appl. Phys. Lett., 104, 172906 (2014). [DOI: https://doi.org/10.1063/1.4875017]
  109. J.Y.H. Kim, A. Cheng, and Y. C. Tai, Proc. IEEE Micr. Elect., 473 (2011). [DOI: https://doi.org/10.1109/MEMSYS.2011.5734464]
  110. X. S. Wang, M. Iijima, Y. Takahashi, and E. Fukada, Jpn. J. Appl. Phys., 32, 2768 (1993). [DOI: https://doi.org/10.1143/Jjap.32.2768]
  111. C. Park, Z. Ounaies, K. E. Wise, and J. S. Harrison, Polymer, 45, 5417 (2004). [DOI: https://doi.org/10.1016/j.polymer.2004.05.057]
  112. J. Simpson, Z. Ounaies, and C. Fay, MRS Online Proceedings Library (OPL), 459, 59 (1996). [DOI: https://doi.org/10.1557/PROC-459-59]
  113. R. Li, J. Zhou, H. Liu, and J. Pei, Materials, 10, 945 (2017). [DOI: https://doi.org/10.3390/ma10080945]
  114. S. Miyata, M. Yoshikawa, S. Tasaka, and M. Ko, Polym. J., 12, 857 (1980). [DOI: https://doi.org/10.1295/polymj.12.857]
  115. H. V. Berlepsch, W. Kunstler, A. Wedel, R. Danz, and D. Geiss, IEEE Transactions on Electrical Insulation, 24, 357(1989). [DOI: https://doi.org/10.1109/14.90298]
  116. J. Y. Lee, M. K. Jin, and E. J. Park, Polym. Bull., 45, 17 (2000). [DOI: https://doi.org/10.1007/s002890070051]
  117. H. K. Hall, R.J.H. Chan, J. Oku, O. R. Hughes, J. Scheinbeim, and B. Newman, Polym. Bull., 17, 135 (1987). [DOI: https://doi.org/10.1007/BF00256878]
  118. N. Koizumi, Y. Murata, and H. Tsunashima, 1985 5th International Symposium on Electrets (ISE 5), 936 (1985). [DOI: https://doi.org/10.1109/ISE.1985.7341598]
  119. N. Koizumi, Y. Murata, and H. Tsunashima, IEEE Transactions on Electrical Insulation, EI-21, 543 (1986). [DOI: https://doi.org/10.1109/Tei.1986.348913]
  120. H. Kodama, Y. Takahashi, and T. Furukawa, Jpn. J. Appl. Phys., 38, 3589 (1999). [DOI: https://doi.org/10.1143/Jjap.38.3589]
  121. Y. Takahashi, H. Kodama, M. Nakamura, T. Furukawa, and M. Date, Polym. J., 31, 263 (1999). [DOI: https://doi.org/10.1295/polymj.31.263]
  122. T. Furukawa and Y. Takahashi, Ferroelectrics, 264, 81 (2001). [DOI: https://doi.org/10.1080/00150190108008551]
  123. S. J. Jang, K. Uchino, S. Nomura, and L. E. Cross, Ferroelectrics, 27, 31 (1980). [DOI: https://doi.org/10.1080/00150198008226059]
  124. Q. M. Zhang, V. V. Bharti, and X. Zhao, Science, 280, 2101 (1998). [DOI: https://doi.org/10.1126/science.280.5372.2101]
  125. H. S. Xu, Z. Y. Cheng, D. Olson, T. Mai, Q. M. Zhang, and G. Kavarnos, Appl. Phys. Lett., 78, 2360 (2001). [DOI: https://doi.org/10.1063/1.1358847]
  126. F. Xia, Z. Y. Cheng, H. S. Xu, H. F. Li, Q. M. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdul-Sadek, and K. D. Belfield, Adv. Mater., 14, 1574 (2002). [DOI: https://doi.org/10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO; 2-%23]
  127. J. Shi, H. Fan, X. Liu, and A. J. Bell, J. Am. Ceram. Soc., 97, 848 (2014). [DOI: https://doi.org/10.1111/jace.12712]
  128. R. Z. Zuo, H. Qi, J. Fu, J. F. Li, M. Shi, and Y. D. Xu, Appl. Phys. Lett., 108, 232904 (2016). [DOI: https://doi.org/10.1063/1.4953457]
  129. F. Li, L. Jin, Z. Xu, and S. J. Zhang, Appl. Phys. Rev., 1, 011103 (2014). [DOI: https://doi.org/10.1063/1.4861260]
  130. S. E. Park and T. R. Shrout, J. Appl. Phys., 82, 1804 (1997). [DOI: https://doi.org/10.1063/1.365983]
  131. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). [DOI: https://doi.org/10.1038/nature03028]
  132. Z. Kutnjak, J. Petzelt, and R. Blinc, Nature, 441, 956 (2006). [DOI: https://doi.org/10.1038/nature04854]
  133. M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, Nature, 451, 545 (2008). [DOI: https://doi.org/10.1038/nature06459]
  134. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science, 326, 977 (2009). [DOI: https://doi.org/10.1126/science.1177046]
  135. P. Mandal, M. J. Pitcher, J. Alaria, H. Niu, P. Borisov, P. Stamenov, J. B. Claridge, and M. J. Rosseinsky, Nature, 525, 363 (2015). [DOI: https://doi.org/10.1038/nature14881]
  136. W. Liu and X. Ren, Phys. Rev. Lett., 103, 257602 (2009). [DOI: https://doi.org/10.1103/PhysRevLett.103.257602]
  137. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, J. Am. Chem. Soc., 136, 2905 (2014). [DOI: https://doi.org/10.1021/ja500076h]
  138. B. Jaffe, R. S. Roth, and S. Marzullo, J. Appl. Phys., 25, 809 (1954). [DOI: https://doi.org/10.1063/1.1721741]
  139. Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, J. F. Li, and D. Viehland, J. Appl. Phys., 94, 3629 (2003). [DOI: https://doi.org/10.1063/1.1599632]
  140. G. A. Rossetti, W. Zhang, and A. G. Khachaturyan, Appl. Phys. Lett., 88, 072912 (2006). [DOI: https://doi.org/10.1063/1.2173721]
  141. S. Emery, C.-J. Cheng, D. Kan, F. Rueckert, S. Alpay, V. Nagarajan, I. Takeuchi, and B. Wells, Appl. Phys. Lett., 97, 152902 (2010). [DOI: https://doi.org/10.1063/1.3481065]
  142. P. Mandal, A. Manjon-Sanz, A. J. Corkett, T. P. Comyn, K. Dawson, T. Stevenson, J. Bennett, L. F. Henrichs, A. J. Bell, E. Nishibori, M. Takata, M. Zanella, M. R. Dolgos, U. Adem, X. Wan, M. J. Pitcher, S. Romani, T. T. Tran, P. S. Halasyamani, J. B. Claridge, and M. J. Rosseinsky, Adv. Mater., 27, 2883 (2015). [DOI: https://doi.org/10.1002/adma.201405452]
  143. S. Bhattacharjee, S. Tripathi, and D. Pandey, Appl. Phys. Lett., 91, 042903 (2007). [DOI: https://doi.org/10.1063/1.2766657]
  144. H. S. Nalwa, Ferroelectric polymers: chemistry: physics, and applications (CRC Press, 1995).
  145. J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics, 37, 579 (1981). [DOI: https://doi.org/10.1080/00150198108223490]
  146. L. Y. Yang, X. Y. Li, E. Allahyarov, P. L. Taylor, Q. M. Zhang, and L. Zhu, Polymer, 54, 1709 (2013). [DOI: https://doi.org/10.1016/j.polymer.2013.01.035]
  147. Y. Liu, Z. B. Han, W. H. Xu, A. Haibibu, and Q. Wang, Macromolecules, 52, 6741 (2019). [DOI: https://doi.org/10.1021/acs.macromol.9b01403]
  148. A. E. Tonelli, F. C. Schilling, and R. E. Cais, Macromolecules, 15, 849 (1982). [DOI: https://doi.org/10.1021/ma00231a031]
  149. A. E. Tonelli, F. C. Schilling, and R. E. Cais, Adv. Chem. Ser., 203, 441 (1983). [DOI: https://doi.org/10.1021/ba-1983-0203ch025]
  150. R. E. Cais and J. M. Kometani, Macromolecules, 17, 1932 (1984). [DOI: https://doi.org/10.1021/ma00140a009]
  151. T. Yagi and M. Tatemoto, Polym. J., 11, 429 (1979). [DOI: https://doi.org/10.1295/polymj.11.429]
  152. K. Aimi, S. Ando, P. Avalle, and R. K. Harris, Polymer, 45, 2281 (2004). [DOI: https://doi.org/10.1016/j.polymer.2004.01.005]
  153. T. Soulestin, V. Ladmiral, T. Lannuzel, F. D. Dos Santos, and B. Ameduri, Macromolecules, 48, 7861 (2015). [DOI: https://doi.org/10.1021/acs.macromol.5b01964]
  154. H. B. Su, A. Strachan, and W. A. Goddard, Phys. Rev., B, 70, 064101 (2004). [DOI: https://doi.org/10.1103/PhysRevB.70.064101]
  155. S. M. Nakhmanson, M. B. Nardelli, and J. Bernholc, Phys. Rev., B, 72, 115210 (2005). [DOI: https://doi.org/10.1103/PhysRevB.72.115210]
  156. F. C. Sun, A. M. Dongare, A. D. Asandei, S. P. Alpay, and S. Nakhmanson, J Mater. Chem. C, 3, 8389 (2015). [DOI: https://doi.org/10.1039/c5tc01224d]
  157. M. Bohlen and K. Bolton, Phys. Chem. Chem. Phys., 16, 12929 (2014). [DOI: https://doi.org/10.1039/c4cp01012d]
  158. Y. Liu, B. Zhang, A. Haibibu, W. H. Xu, Z. B. Han, W. C. Lu, J. Bernholc, and Q. Wang, J. Phys. Chem. C, 123, 8727 (2019). [DOI: https://doi.org/10.1021/acs.jpcc.9b01220]
  159. D. Damjanovic, Appl. Phys. Lett., 97, 062906 (2010). [DOI: https://doi.org/10.1063/1.3479479]
  160. F. Tasnadi, B. Alling, C. Hoglund, G. Wingqvist, J. Birch, L. Hultman, and I. A. Abrikosov, Phys. Rev. Lett., 104, 137601 (2010). [DOI: https://doi.org/10.1103/PhysRevLett.104.137601]
  161. M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, Adv. Mater., 21, 593 (2009). [DOI: https://doi.org/10.1002/adma.200802611]
  162. Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, J. F. Li, and D. Viehland, Phys. Rev. Lett., 91, 197601 (2003). [DOI: https://doi.org/10.1103/PhysRevLett.91.197601]
  163. K. A. Schonau, L. A. Schmitt, M. Knapp, H. Fuess, R. A. Eichel, H. Kungl, and M. J. Hoffmann, Phy. Rev. B, 75, 184117 (2007). [DOI: https://doi.org/10.1103/PhysRevB.75.184117]
  164. W. F. Rao and Y. U. Wang, Appl. Phys. Lett., 91, 052901 (2007). [DOI: https://doi.org/10.1063/1.2767146]
  165. G. A. Rossetti, A. G. Khachaturyan, G. Akcay, and Y. Ni, J. Appl. Phys., 103, 114113 (2008). [DOI: https://doi.org/10.1063/1.2930883]
  166. L. Jin, V. Porokhonskyy, and D. Damjanovic, Appl. Phys. Lett., 96, 242902 (2010). [DOI: https://doi.org/10.1063/1.3455328]
  167. C. A. Randall, N. Kim, J. P. Kucera, W. W. Cao, and T. R. Shrout, J. Am. Ceram. Soc., 81, 677 (1998). [DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02389.x]
  168. M. Davis, M. Budimir, D. Damjanovic, and N. Setter, J. Appl. Phys., 101, 054112 (2007). [DOI: https://doi.org/10.1063/1.2653925]
  169. E. L. Nix and I. M. Ward, Ferroelectrics, 67, 137 (1986). [DOI: https://doi.org/10.1080/00150198608245016]
  170. L. Ma, S. N. Melkote, and J. B. Castle, Int. J. Adv. Manuf. Tech., 70, 1603 (2014). [DOI: https://doi.org/10.1007/s00170-013-5410-2]
  171. D. Damjanovic, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1574 (2009). [DOI: https://doi.org/10.1109/TUFFC.2009.1222]
  172. S. M. Nakhmanson, M. B. Nardelli, and J. Bernholc, Phys. Rev. Lett., 92, 115504 (2004). [DOI: https://doi.org/10.1103/PhysRevLett.92.115504]
  173. S. Liu and R. E. Cohen, Phys. Rev. Lett., 119, 207601 (2017). [DOI: https://doi.org/10.1103/PhysRevLett.119.207601]
  174. B. Noheda, D. Cox, G. Shirane, J. Gao, and Z.-G. Ye, Phys. Rev. B, 66, 054104 (2002). [DOI: https://doi.org/10.1103/PhysRevB.66.054104]
  175. C. G. Duan, W. N. Mei, J. R. Hardy, S. Ducharme, J. W. Choi, and P. A. Dowben, Europhys. Lett., 61, 81 (2003). [DOI: https://doi.org/10.1209/epl/i2003-00248-2]
  176. V. S. Bystrov, N. K. Bystrova, E. V. Paramonova, G. Vizdrik, A. V. Sapronova, M. Kuehn, H. Kliem, and A. L. Kholkin, J. Phys.: Condens. Matter., 19, 456210 (2007). [DOI: https://doi.org/10.1088/0953-8984/19/45/456210]
  177. K. Tashiro, S. Nishimura, and M. Kobayashi, Macromolecules, 21, 2463 (1988). [DOI: https://doi.org/10.1021/ma00186a027]
  178. T. Yuki, S. Ito, T. Koda, and S. Ikeda, Jpn. J. Appl. Phys., 37, 5372 (1998). [DOI: https://doi.org/10.1143/Jjap.37.5372]
  179. S. Ikeda, H. Suzuki, and S. Nagami, Jpn. J. Appl. Phys., 31, 1112 (1992). [DOI: https://doi.org/10.1143/Jjap.31.1112]
  180. F. Guan, J. Wang, L. Yang, J.-K. Tseng, K. Han, Q. Wang, and L. Zhu, Macromolecules, 44, 2190 (2011). [DOI: https://doi.org/10.1021/ma102910v]
  181. J. J. Li, X. Hu, G. X. Gao, S. J. Ding, H. Y. Li, L. J. Yang, and Z. C. Zhang, J. Mater. Chem. C, 1, 1111 (2013). [DOI: https://doi.org/10.1039/c2tc00431c]
  182. L. Y. Yang, B. A. Tyburski, F. D. Dos Santos, M. K. Endoh, T. Koga, D. Huang, Y. J. Wang, and L. Zhu, Macromolecules, 47, 8119 (2014). [DOI: https://doi.org/10.1021/ma501852x]
  183. A. J. Lovinger, Macromolecules, 18, 910 (1985). [DOI: https://doi.org/10.1021/ma00147a016]
  184. B. Daudin, M. Dubus, and J. F. Legrand, J. Appl. Phys., 62, 994 (1987). [DOI: https://doi.org/10.1063/1.339685]
  185. Y. Liu and Q. Wang, Adv. Sci., 7, 1902468 (2020). [DOI: https://doi.org/10.1002/advs.201902468]
  186. J. Park, Y. Lim, S. Y. Cho, M. Byun, K. I. Park, H. E. Lee, S. D. Bu, K. T. Lee, Q. Wang, and C. K. Jeong, Small, 18, 2104472 (2022). [DOI: https://doi.org/10.1002/smll.202104472]
  187. X. Chen, H. Qin, X. Qian, W. Zhu, B. Li, B. Zhang, W. Lu, R. Li, S. Zhang, and L. Zhu, Science 375, 1418 (2022). [DOI: https://doi.org/10.1126/science.abn093]
  188. Y. Liu, B. Zhang, W. Xu, A. Haibibu, Z. Han, W. Lu, J. Bernholc, and Q. Wang, Nat. Mater., 19, 1169 (2020). [DOI: https://doi.org/10.1038/s41563-020-0724-6]