
INTRODUCTION

Despite the introduction of targeted anticancer therapy, 
5-fluorouracil (5-FU) remains an important chemotherapeutic 
drug for treating several cancers, including colorectal, breast, 
and gastric cancer. 5-FU’s cytotoxic mechanism involves the 
inhibition of thymidylate biosynthesis or the misincorporation 
of fluorinated nucleotides into newly synthesized DNA or RNA 
(Longley et al., 2003). It can be effective in the treatment of 
cancer when targeted therapy is unavailable. As described 
in previous studies, the development of prodrugs such as 
capecitabine has improved the limitation of 5-FU due to poor 
oral absorption (Pazdur et al., 1998). Furthermore, combi-
nation chemotherapy improved 5-FU’s anticancer effect, as 
demonstrated by FOLFOX (folinic acid, 5-FU, and oxaliplatin) 
and FOLFIRI (folinic acid, 5-FU, and irinotecan) (Souglakos et 
al., 2006). Combining chemotherapeutics with different mech-
anisms could overcome the heterogeneity of tumor cells and 
decrease the development of resistance (Frei et al., 1998). 
Nevertheless, the overall response rate remains less than 
50% (Mehrzad et al., 2016) due to the cells being resistant to 
chemotherapy.

Studies have been conducted to elucidate the 5-FU resis-
tance mechanism described elsewhere (Blondy et al., 2020). 
The generation of reactive oxygen species (ROS) frequently 
correlates with the induction of apoptosis in many cancer cells; 

modulation of ROS may be one mechanism by which cancer 
cells avoid the cytotoxicity induced by 5-FU (Mates and San-
chez-Jimenez, 2000). For example, in human lung carcinoma 
cells NCI-H1299, the expression of reactive oxygen modulator 
1 (Romo1) is elevated, and the cellular level of ROS is high. At 
the same time, tumor cells maintain high levels of antioxidant 
enzymes and antiapoptotic Bcl-2 family proteins, most likely 
to reduce oxidative stress (Hwang et al., 2007). This implies 
that cancer cells prefer a high level of ROS while keeping the 
protective mechanisms running to minimize the unwanted tox-
icity of ROS.

ROS have a versatile role in cancer cell biology (Liou and 
Storz, 2010). When elevated, ROS are thought to act as mi-
togens, inducing cancer cell proliferation (Torres and Forman, 
2003). DNA damage from oxidative stress may lead to muta-
tions that can either activate oncogenes or inactivate tumor 
suppressor genes (Wei, 1992). ROS production is minimal 
in normal cells, and antioxidant functions effectively remove 
ROS (Fig. 1A). Increased ROS production is frequently ob-
served in cancer cells with a poor prognosis (Kumar et al., 
2008). Cancer cells maintain a relatively high level of ROS, 
likely due to the tumor-promoting effects of ROS such as an-
giogenesis (Ushio-Fukai and Nakamura, 2008), metastasis 
(Nishikawa, 2008), and proliferation (Juhasz et al., 2017). As 
shown in Fig. 1B, cancer cells increase the level of antioxi-
dant systems in response to elevated levels of ROS to protect 
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themselves from oxidative stress (Gorrini et al., 2013). Many 
anticancer drugs, including 5-FU, induce high levels of ROS 
to exert cytotoxic effects. Cancer cells adapt to the escalated 
ROS level by expressing even more antioxidant systems (Fig. 
1C) (Liu et al., 2016b). When there is insufficient protection 
from high levels of ROS, cancer cells may not survive (Fig. 
1D).

In this study, we summarized our understanding of natu-
ral and synthetic compounds (Table 1) and identified possible 
cellular targets involved with the modulation of cellular ROS 
levels to overcome 5-FU resistance.

NATURAL/SYNTHETIC COMPOUNDS THAT 
MODULATE ROS TO OVERCOME 5-FU RESISTANCE

Metal chelators
Tetrathiomolybdate, a copper-chelating drug, was initially 

developed as an anticopper and antiangiogenic agent to treat 
Wilson’s disease (Brewer et al., 1991). Interestingly, it en-
hances the activity of the anticancer drug doxorubicin, a DNA 
intercalator in ovarian cancer cells (Kim et al., 2011). Tetrathio-
molybdate increased the cytotoxicity of doxorubicin at subcy-
totoxic levels, likely by targeting antioxidant enzymes such as 
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 Table 1. Selected compounds increasing ROS generation to overcome 5-FU resistance

Compound Cell/tissue type Effects/Mechanisms

tetrathiomolybdate Ovarian cancer cells Stress-mediated apoptosis↑, activation of JNK and 
p38 MAPK↑

TPEN Colon cancer HCT116 cells Mitochondrial membrane potential (MMP)↓
apigenin Hepatocellular carcinoma cells Mitochondrial apoptosis↑ 
Polyphenolics from quince Colon cancer cells LS174 NF-κB activation↓, cell cycle progression↓,  

angiogenesis↓
kaempferol Colon cancer cells LS174 Activation of STAT3↓, angiogenesis↓
shikonin Gastric cancer SGC-7901 Translocation of AIF and Endo G into nucleus
proanthocyanidin Breast cancer MDA-MB-231 cells G2/M cell cycle arrest↑, MMP↓
B63 (curcumin analog) Gastric cancer cells SGC-7901 etc. Expression of Thioredoxin reductase 1↓
dimethoxycurcumin Colon cancer cells SW480, SW620 Expression of Bax and cyt C↑, expression of Bcl-2↓
Sanguisorba officinalis L. radix Colorectal cancer cells RKO, HCT116 Bax/Bcl-2 disruption↑, autophagy↑
manuka honey Colon cancer cells HCT116 Expression of EGFR, HER2, Akt and mTOR↓
emodin Breast cancer MCF7 cells Expression of E2F1 and NRPARP↓
gypenoside Colorectal cancer cells SW-480,SW-620 and Caco2 DNA damage induction↑, expression of p53↑
tubeimoside-I Colorectal cancer cells SW480, SW620, HCT116, 

and RKO
Activation of AMPK↑

oridonin Colorectal cancer cells HCT115 Activation of JNK/c-Jun pathway↓
Coptis herb extracts Lung cancer A549 cells ROS↑
mahanine Colorectal cancer cells HCT116, SW480 Expression of PTEN and p53 in nucleus↑
caffeine Liver cancer cells HepG2, HLF, Huh7, etc. Cleavage of PARP↑, expression of Bcl-2 and Bcl-xL↓
selenocysteine Skin cancer cells A375 Activation of ERK/Akt signaling↓
allicin Liver cancer cells SK-Hep-1, BEL-7402 ROS↑, MMP↓
3-bromypyruvate Liver cancer cells SNU449, Hep3B ROS↑, MMP↓

Fig. 1. Balance between ROS production and antioxidant function. (A) ROS (water in the figure) are produced by various mechanisms 
(drawn as a water tap), and antioxidant function (drawn as a drain) effectively removes them, allowing physiological ROS levels to remain 
low. (B) Increased ROS generation is frequently observed in cancer cells, and cancer cells increase the level of antioxidant functions ac-
cordingly. The cellular level of ROS increases but not to toxic levels. (C) Even higher antioxidant function accompanies ROS overproduction 
when cancer cells adapt to chemotherapy. (D) Decrease of antioxidant function may result in cellular toxicity.
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copper/zinc–superoxide dismutase (SOD). Furthermore, by 
generating ROS, tetrathiomolybdate increased the cytotoxicity 
of several anticancer drugs, including 5-FU and mitomycin C 
(Kim et al., 2012). The production of ROS induced by tetrathio-
molybdate resulted in the activation of stress-mediated apop-
tosis, JNK, and p38 mitogen-activated protein kinase (MAPK), 
which increased cytotoxicity.

N,N,N′,N′-tetrakis-[2-pyridylmethyl]-ethylenediamine 
(TPEN) was reported to have a cancer-specific copper che-
lation mediated cytotoxicity (Fatfat et al., 2014). Additionally, 
TPEN treatment resulted in the excessive generation of ROS 
via the formation of the TPEN-copper complex, leading to 
cytotoxicity in human colon cancer HCT116 cells. Evidently, 
elevated copper levels may be important in maintaining the 
proper level of ROS generation in cancer cells, whereas in-
tracellular copper levels are crucial to maintaining the proper 
level of ROS generation in cancer cells (Gupte and Mumper, 
2009). Furthermore, although cellular copper levels may be 
a target for cancer treatment, it remains to be seen whether 
a copper-chelating drug can help overcome 5-FU resistance.

Phenolic compounds
Interestingly, several antioxidant compounds promote the 

production of ROS in cancer cells. Although more research 
is needed to elucidate the precise mechanisms, these anti-
oxidant compounds are thought to modulate ROS generation 
and increase the cytotoxicity of 5-FU. Phenolic compounds 
refer to diverse natural products such as flavanols, flavonols, 
chalcones, tannins, curcuminoids, etc. Their antioxidant func-
tion is usually attributed to the phenolic ring structure (Cai et 
al., 2006). The following sections list several phenolic com-
pounds (Fig. 2) that have been reported to have synergistic 
cytotoxicity when combined with 5-FU or to be cytotoxic to 
5-FU resistant cancer cells.

Apigenin is a flavonoid compound found in common fruits 
and vegetables that exhibits anti-inflammatory, antioxidant, 
and anticancer activity (Shukla and Gupta, 2010). Research 
revealed that apigenin cotreatment with 5-FU at a subtoxic 
level demonstrated synergistic cytotoxicity in treating hepa-
tocellular carcinoma (HCC) cells in vitro and in vivo (Hu et 
al., 2015). Moreover, the ROS level was increased, and the 
mitochondrial apoptotic pathway was activated, indicating that 
apigenin has a pro-oxidant function. Although it remains to be 
seen whether apigenin is cytotoxic to 5-FU resistant cancer 
cells, apigenin, which is well-known for its antioxidant activity, 
appears to also demonstrate some pro-oxidant activity.

Fig. 2. Phenolic compounds.
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The polyphenolic extract from quince (Cydonia oblonga 
Miller) has shown antiproliferative effects in kidney and colon 
cancer cells (Carvalho et al., 2010). A Tunisian research group 
reported that quince peel polyphenolic extract induced ROS 
production, and the cytotoxic effect of 5-FU was increased in 
human colon adenocarcinoma LS174 cell (Riahi-Chebbi et al., 
2015). Although the potential expansion of the cellular work to 
a preclinical level requires further study, it is worth noting that 
ROS generation may be linked to the cytotoxicity of 5-FU. Ri-
ahi-Chebbi et al. (2019), conversely, reported that kaempferol, 
another phenolic compound derived from quince, inhibited the 
production of ROS while exhibiting the same cytotoxicity as 
other phenolic compounds and was effective even in 5-FU re-
sistant colon cancer cells. This intriguing result cautions us 
not to assume that a decrease in ROS levels is cytoprotective, 
as other mechanisms may simultaneously be responsible for 
cytotoxicity. 

Shikonin, a naphthoquinone derivative found in the shikonin 
plant (Lithospermum erythrohizon), is known for its cytotoxicity 
and anti-inflammatory activity (Chen et al., 2002). Similarly, 
Liang et al. (2016) studied the antitumor activity of shikonin 
on gastric cancer. They observed that shikonin induced ROS 
generation and enhanced the 5-FU sensitivity in vitro and in 
vivo. In addition to the mitochondria-mediated apoptotic path-
way, they detected the caspase-independent nuclear translo-
cation of the apoptosis-inducing factor and endonuclease G 
from mitochondria.

Proanthocyanidin compounds from white fig Ficus virens 
(Chen et al., 2017b) and Uncaria rhynchophylla (Chen et al., 
2017c) have been shown to have cytotoxic activity on hu-
man breast cancer MDA-MB-231 cells. Proanthocyanidins 
increased cellular ROS and the mitochondrial apoptotic path-
way, and synergistic cytotoxicity was observed when pro-
anthocyanidins were combined with 5-FU. Surprisingly, the 
cytotoxic effect appeared to be cancer cell-specific, and pro-
anthocyanidins alleviated intestinal mucositis in 5-FU-treated 
rats (Chen et al., 2017b).

Curcumin, a polyphenolic compound frequently found in 
curry powders, has long been considered an antioxidant (Ak 
and Gulcin, 2008). Several studies, however, have reported 
the generation of ROS by curcumin analogs. Researchers 
created B63, a curcumin analog, as an anticancer agent and 
discovered that B63 induced ROS-mediated paraptosis in 
gastric cancer cells (Chen et al., 2019). They showed the inhi-
bition of thioredoxin reductase 1 (TrxR1) by B63 in vitro, and 
the overexpression of TrxR1 negated the proparaptotic activity 
of B63. Their findings indicate that TrxR1 is a target of B63 and 
that B63 effectively suppressed the growth of 5-FU-resistant 
gastric cancer cells. Similarly, dimethoxycurcumin increases 
ROS production in colon cancer cells, allowing it to exert cy-
totoxic activity against colon cancer SW480 and SW620 cells 
when combined with 5-FU (Zhao et al., 2017).

A Chinese research group studied the water extract of 
Sanguisorba officinalis L. radix, for its anticancer activity on 
human colorectal cancer HCT116 and RKO cells (Liu et al., 
2016a). They demonstrated that treating cells with the extract 
and 5-FU significantly increased ROS generation and that 
cotreatment increased 5-FU cytotoxicity. Moreover, they re-
ported an increase in autophagy-related markers, light chain 
LC3, and p62, besides ROS generation, implying that the gen-
eration of ROS is not the only explanation for the synergism 
between Sanguisorba officinalis L. radix and 5-FU. The study 

demonstrated that gallic acid, catechinic acid, and ellagic acid, 
three main constituents of Sanguisorba officinalis L. radix, are 
responsible for the synergistic activity.

Manuka honey, a type of honey collected from the manuka 
tree Leptospermum scoparium, has antioxidant, anti-inflam-
matory, and anticancer properties (Afrin et al., 2018b). Re-
ports describe the synergistic cytotoxicity of manuka honey 
on human colon cancer HCT116 and LoVo cells when com-
bined with 5-FU (Afrin et al., 2018a). Manuka honey, a poly-
phenol-rich natural product, suppressed cell survival signals in 
HCT116 and LoVo cells while inducing pro-apoptotic signals 
and ROS production. Furthermore, the combined treatment 
reduced the activity of antioxidant enzymes such as SOD, 
catalase, glutathione peroxidase, glutathione reductase, and 
the expression of Nrf2, SOD, catalase, and HO-1, resulting in 
increased cell death due to oxidative stress.

Emodin, a natural anthraquinone compound, has antipro-
liferative activity in human breast cancer MCF7 cells (Huang 
et al., 2007). In a later study, tests were conducted to deter-
mine whether low-dose emodin could potentiate the activity of 
5-FU in MCF7 cells (Zu et al., 2018). Findings revealed that 
emodin increased 5-FU-induced apoptosis in breast cancer 
cells by generating ROS. Surprisingly, researchers observed 
cellular senescence after 5-FU treatment with emodin, which 
they believe was caused by the upregulation of cyclin-depen-
dent kinase inhibitors and the downregulation of E2F1 and the 
notch-regulated ankyrin repeat protein (NRARP) protein. Their 
findings suggested that NRARP is a critical target for inducing 
cellular senescence.

Polycyclic compounds and alkaloids
Several polycyclic compounds and alkaloids (Fig. 3) have 

been investigated for their role in producing ROS in cancer 
cells. For instance, gypenosides are triterpenoid saponin 
compounds whose potential use in cancer treatment has 
been documented (Ahmad et al., 2019), and they are thought 
to have potentiated 5-FU’s cytotoxicity (Kong et al., 2015). 
Results showed that p53 and ROS generation mediates the 
synergism between gypenosides and 5-FU to exert antican-
cer activity. Additionally, the triterpenoid saponin compound, 
tubeimoside-I, isolated from Rhizoma Bolbostemmatis, has 
exhibited antitumor activity in various types of tumors (Yu et 
al., 1994). Yan et al. (2019) discovered that combining 5-FU 
and tubeimoside-I suppressed the growth of colorectal can-
cer SW480, SW620, HCT116, and RKO cells in a synergistic 
manner, whereas tubeimoside-I induced cellular ROS and the 
activation of AMPK, resulting in cytotoxic autophagy.

Oridonin, a diterpenoid from the medicinal herb Rabdosia 
rubescens, exhibits antitumor activity (Li et al., 2011). Stud-
ies assessed oridonin’s anticancer effect in colorectal cancer 
HCT15 cells and compared the 5-FU resistant HCT15 cells 
and sensitive cells (Zhang et al., 2019). To exert its cytotoxic-
ity, oridonin induced the generation of ROS in both cells and 
the activation of the JNK/c-Jun pathway. Notably, cotreatment 
with N-acetylcysteine reversed JNK/c-Jun pathway activation, 
indicating that ROS generation mediates JNK/c-Jun pathway 
activation. Although oridonin activated apoptosis in colorec-
tal cancer cells, it appears to activate necroptosis in renal 
carcinoma 786-O cells (Zheng et al., 2018). Cotreatment of 
oridonin and 5-FU showed synergistic cytotoxicity, probably 
through separate mechanisms, and notably, the same com-
pound showed a different mechanism of action.

Biomol  Ther 30(6), 479-489 (2022) 
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The anticancer effects of the Coptis herb extracts and the 
major alkaloid component berberine have been well-reported, 
and their cytotoxic effects have been detected in various can-
cer cell lines (Tang et al., 2009). Furthermore, Coptis extract 
showed cytotoxicity when combined with 5-FU in human lung 
cancer A549 cells (He et al., 2012). The cytotoxicity of either 
Coptis extract or berberine was associated with an increase 
in ROS generation in a dose-dependent manner, and when 
combined with 5-FU, the anticancer effect was enhanced.

Mahanine, an alkaloid from the curry leaf plant (Murraya 
koenigii), has exhibited various biological activities (Ramse-
wak et al., 1999). Das et al. (2014) showed the synergistic en-
hancement of cytotoxicity of 5-FU when mahanine was used 
together in human colorectal cancer HCT116 and SW480 
cells. Interestingly, the synergistic effect was observed irre-
spective of p53 status, i.e., both p53wt and p53null cells were 
sensitive to mahanine in combination with 5-FU. Although 
the precise mechanism is unknown, mahanine induced ROS 
production and led to the accumulation of PTEN and p53 in 
the nucleus. The increased production of ROS appears to be 
linked to the activation of tumor suppressor proteins PTEN 
and p53, resulting in increased cytotoxicity of 5-FU.

Caffeine, a food ingredient found in coffee and tea, slows 
the growth of liver cancer cells, including HepG2, HLF, Huh7, 
and PLC/PRF/5 (Okano et al., 2008). Many studies report a 
synergistic effect of caffeine and cisplatin in various cancers, 

such as the human endometrial cancer cell line RL95-2 (Lin et 
al., 2021). Recently, Wang et al. (2019) reported that the an-
titumor activity of 5-FU was enhanced by cotreatment of caf-
feine in HCC HepG3 and SMMMC cells. They discovered that 
combining 5-FU and caffeine inhibited HCC cell growth and 
induced apoptosis by increasing ROS production.

Role of other small molecules in ROS production
As described below, reports suggest that other small mol-

ecules (Fig. 4) may modulate ROS generation in cancer cells. 
First, selenocystine is the oxidation product of selenocyste-
ine, which has a diselenide bond connecting two amino ac-
ids. It induces apoptosis in human cancer cells such as A375, 
HepG2, and MCF7 by increasing ROS production (Chen and 
Wong, 2009). Fan et al. (2013) investigated whether seleno-
cystine cotreatment could increase the cytotoxicity of 5-FU in 
human melanoma A375 cells. They observed significant se-
lenocystine-induced DNA damage mediated by ROS produc-
tion and the inactivation of the extracellular-signal-regulated 
kinase (ERK) and Akt signaling pathways, resulting in antican-
cer synergism. Furthermore, the induction of ROS-mediated 
apoptosis in melanoma cells by 3,3′-diselenodipropionic acid, 
a selenocysteine derivative, is another example of potentially 
overcoming anticancer drug resistance (Cao et al., 2014).

Allicin, a compound in garlic, has drawn considerable atten-
tion as an antimicrobial antioxidant (Chan et al., 2013). Zou 

Fig. 3. Polycyclic compounds and alkaloids.
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et al. (2016) tested whether the anticancer activity of 5-FU 
in human HCC SK-Hep-1 and BEL-7402 cells and in nude 
mice increased with allicin and 5-FU cotreatment. They dis-
covered that cotreatment with allicin increased ROS produc-
tion and sensitization of HCC cells to 5-FU. The synergistic 
effect was reversed by N-acetylcysteine treatment, indicating 
that the anticancer activity is mediated by ROS generation. 
Their study also demonstrated that cotreatment with allicin 
and 5-FU significantly inhibited the growth of HCC xenograft 
tumors in nude mice; although commonly thought to be an 
antioxidant, allicin increased ROS generation when combined 
with combined 5-FU.

3-Bromopyruvate is an inhibitor of hexokinase (Ko et al., 
2001), the key enzyme of glycolysis. The researchers reported 
that 3-bromopyruvate induced the ROS-mediated cell death of 
hepatoma SNU449 and Hep3B cells (Kim et al., 2008). Upon 
treatment with 3-bromopyruvate, both cell lines underwent 
necrosis and apoptosis in an ATP depletion-dependent man-
ner due to increased intracellular ROS and the disruption of 
mitochondrial function. Furthermore, the combination of 3-bro-
mopyruvate and 5-FU inhibited tumor growth in vivo and in 
vitro (Chong et al., 2017).

ENDOGENOUS CELLULAR TARGETS TO 
OVERCOME 5-FU RESISTANCE

Nuclear factor erythroid 2-related factor 2 (Nrf2)
The transcription factor Nrf2 mediates antioxidant response 

(Moi et al., 1994). Nrf2 exists in the cytoplasm as the Nrf2-
Keap1 complex in the absence of oxidative stress. The cellular 
level of Nrf2 is kept low by continuous degradation via the 
ubiquitin–proteasome system, which is mediated by Keap1, 
the Nrf2 key repressor (Zhang, 2006). Several cysteine resi-
dues of Keap1 are modified when exposed to oxidative stress, 
resulting in the dissociation of the Nrf2-Keap1 complex. Nrf2, 
which is released by Keap1, enters the nucleus and binds to 
the DNA in the antioxidant response element (ARE) region to 
regulate the expression of several genes involved in antioxi-
dant function, such as glutamate-cysteine ligase catalytic sub-
unit (Solis et al., 2002), thioredoxin reductase (Soriano et al., 
2009), and heme oxygenase-1 (HO-1) (Jarmi and Agarwal, 
2009). When expressed, these antioxidants may impart some 
degree of protection to cells under oxidative stress. Overex-
pression of Nrf2 in gastric cancer serves as a prognostic mark-
er for 5-FU resistance, lending credence to Nrf2’s prosurvival 
role (Hu et al., 2013). Similarly, Nrf2 has a role in developing 
5-FU resistance in colon cancer HT-29 cells (Akhdar et al., 
2009). Kang et al. (2014) discovered hypomethylation of Nrf2 
promoter CpG islands in 5-FU resistance colorectal cancer 
SNU5/5-FUR cells compared with nonresistant cancer cells, 
indicating that Nrf2 upregulation led to 5-FU resistance.

Besides its antioxidant function, Nrf2 regulates the expres-
sion of drug-metabolizing enzymes and drug transporters, re-
sulting in a decrease in 5-FU efficacy (Bai et al., 2016). A team 
of researchers reported that 2′,4′-dihydroxy-6′methoxy-3′,5′-
dimethylchalcone, an inhibitor of Nrf2/ARE pathway, could re-
verse 5-FU resistance in HCC BEL-7402 cells by inhibiting the 
5-FU efflux (Wei et al., 2018).

ROS/mitogen-activated protein kinases pathway
JNK, c-Jun N-terminal kinase, belongs to MAPKs. The func-

tion of JNK is related to both cell survival (Wu et al., 2019) and 
death (Dhanasekaran and Reddy, 2008). Based on the stimuli, 
JNK signaling can be either prosurvival or pro-apoptotic, and 
the signaling pathway is not directly linked to the cytotoxic ef-
fect of 5-FU. It appears that either activation or inactivation of 
the proper signaling pathway could place an additional burden 
on cells treated with 5-FU, potentially increasing 5-FU cyto-
toxicity.

Compared with differentiated and chemosensitive pancre-
atic cancer stem cells, the JNK signaling pathway is activated 
in pancreatic cancer stem cells (Okada et al., 2014; Suzuki 
et al., 2015). Researchers established that the JNK signal-
ing pathway is activated in the pancreatic cancer stem cells 
(Suzuki et al., 2015). Pretreatment of cells with SP600125, a 
JNK inhibitor, resulted in the sensitization of the cells to 5-FU 
and gemcitabine. The cytotoxic effects of these chemothera-
peutics were accompanied by an increase in ROS production. 
Furthermore, the use of N-acetylcysteine, a free radical scav-
enger, reduced the intracellular level of ROS and allowed the 
cells to remain resistant to 5-FU; this is an example of the det-
rimental use of an antioxidant in chemotherapy. The synergis-
tic cytotoxicity of 5-FU and the compounds mentioned above, 
tetrathiomolybdate (Kim et al., 2012) and oridonin (Zhang et 
al., 2019), is associated with the generation of ROS and the 
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activation of JNK. 5-FU cytotoxicity appears to be enhanced 
by oxidative stress and JNK activation, potentially overcoming 
5-FU resistance.

Similarly, coronarin D, a diterpene compound derived from 
grapes, has anticancer activity. Zingiberaceae (Bailly, 2020) is 
involved with the activation of JNK signaling and ROS genera-
tion, as shown in human nasopharyngeal cancer cells (Chen 
et al., 2017a). It was recently reported that coronarin D induc-
es the apoptosis of 5-FU resistant human oral cancer cells. 
The cytotoxicity is related to the JNK signaling pathway (Hsieh 
et al., 2020).

Besides JNK signaling, activation of p38 MAP kinase is 
linked to 5-FU cytotoxicity. According to Xie et al. (2016), the 
overexpression of nicotinamide N-methyltransferase causes a 
decrease in ROS levels, and the inactivation of p38 signal-
ing is involved in 5-FU resistance in colorectal cancer SW480 
cells. Moon et al. (2020) reported that the activation of p38 by 
yeast extract resulted in the antitumor effect on 5-FU resistant 
colorectal cancer SNU-C5 cells.

Nevertheless, the role of the ERK pathway in 5-FU sensi-
tivity appears to be prosurvival. Kim et al. (2016) discovered 
ERK overexpression in SUNC5/FUR cells, resistant to 5-FU. 
Furthermore, sensitization was achieved by transfecting 5-FU 
resistant cells with siRNA against ERK. The role of aluminum 
chloride in inducing 5-FU resistance was further investigated, 
revealing that ERK activation facilitated the survival of HCC 
HepG2 cells during 5-FU treatment (Li et al., 2019a). By con-
trast, U0126, an ERK inhibitor, reversed aluminum chloride-
induced 5-FU resistance; it also remains unclear whether ERK 
activation is required for cells to remain resistant to 5-FU. A 
Japanese group, for example, reported a 5-FU resistant hu-
man squamous carcinoma UM-SCC-23 cell line that activated 
both ERK and Akt signals (You et al., 2009). Nevertheless, 
U0126 could not reverse the resistance, whereas Akt inhibi-
tion was. Furthermore, Wang et al. (2017b) reported that 5-FU 
resistance caused by ADAM12 overexpression increased 
phosphorylated Akt but not phosphorylated ERK in breast 
cancer SKBR3 MDA-MB-231 cells.

PI3K/Akt pathway
Phosphatidylinositol 3-kinase (PI3K)/Akt pathway is consid-

ered one of the key signaling pathways that confers cancer 
cells’ resistance to chemotherapy (Liu et al., 2020). Research-
ers reported the constitutive activation of Akt signaling in 5-FU 
resistant squamous carcinoma UM-SCC-23 cells (You et al., 
2009). By contrast, the inhibition of Akt signaling was noticed 
when the synergistic cytotoxicity of 5-FU was observed by the 
cotreatment of several compounds, including violacein (Ko-
dach et al., 2006), curcumin (Zhang et al., 2017), and kaemp-
ferol (Li et al., 2019b). Recent reports state that celecoxib, a 
COX-2 inhibitor, induced apoptosis by inhibiting Akt in 5-FU 
resistant gastric carcinoma AGS cells (Choi et al., 2021). The 
inhibition of COX-2 is thought to have resulted in the down-
regulation of Akt and the induction of apoptosis. MK-2206’s 
direct inhibition of Akt also increases the cytotoxicity of 5-FU in 
gastric cancer SGC-7901 and MKN45 cells (Jin et al., 2016). 
Hence, it remains to be confirmed whether MK-2206 could be 
used to treat 5-FU resistant cells.

Autophagy pathway
Autophagy, a self-eating process involving the autophago-

some (Glick et al., 2010), has two states, either prosurvival or 

prodeath, depending on the mode of activation and which cells 
are affected. Initially, the prosurvival role of autophagy was re-
ported because inhibition of autophagy was associated with 
increased cytotoxicity of 5-FU in human colon cancer colon26 
and HT29 cells in vitro and in vivo (Li et al., 2010). The pro-
survival role of autophagy was again shown in HCT116 p53−/− 
cells (Sui et al., 2014) and human HCC Bel-7402 cells (Wang 
et al., 2017a). The involvement of prosurvival autophagy in 
5-FU resistance has been demonstrated for several cellular 
components such as TSPAN9 (Qi et al., 2020) and claudin-1 
(Tong et al., 2019). Zhang et al. (2017) reported synergis-
tic cytotoxicity from the combination of curcumin and 5-FU, 
which included a reduction in prosurvival autophagy mediated 
by AMPK and Unc-51 Like Autophagy Activating Kinase 1 
(ULK1). By contrast, several compounds have been shown to 
increase the cytotoxicity of 5-FU by inducing prodeath autoph-
agy. β-Elemene, a sesquiterpene compound found in various 
plants, induces prodeath autophagy in 5-FU resistant colorec-
tal cancer HCT116 p53−/− cells (Zhang et al., 2020). Similarly, 
when combined with 5-FU, withaferin-A, a natural product with 
a steroidal lactone structure, induces endoplasmic reticulum 
stress-mediated autophagy (Alnuqaydan et al., 2020) in CRC 
cells (SW480, HT29, HCT116).

Aminopeptidase N (CD13)
Aminopeptidase N, also known as CD13, is a cell-surface-

anchored zinc peptidase with various functions, including 
peptide cleavage, endocytosis, and signaling (Mina-Osorio, 
2008). It was initially identified as a cell surface marker CD13 
for myeloid leukemia cells (Sakai et al., 1987), and the signal-
ing function of aminopeptidase N appears to be independent of 
enzyme activity. Aminopeptidase expression has been linked 
to a poor prognosis and angiogenesis in cancer cells such as 
nonsmall cell lung cancer (Tokuhara et al., 2006), pancreatic 
carcinoma (Ikeda et al., 2003), and colon cancer (Hashida et 
al., 2002). When substrates or inhibitors bind to CD13, the 
conformation of the dimeric CD13 structure changes, result-
ing in signal transduction (Xu et al., 1997), and CD13 protects 
cells from apoptosis by reducing ROS-induced DNA damage.

Ubenimex, also known as bestatin, is a dipeptide com-
pound produced by actinomycetes (Umezawa et al., 1976). It 
specifically blocks and antagonizes CD13 (Look et al., 1989). 
Haraguchi et al. (2010) reported that ubenimex or a CD13-
neutralizing antibody inhibited CD13 in hepatocellular cancer 
HuH7 cells. They revealed that combining 5-FU and ubenimex 
increased ROS production and improved liver cancer therapy. 
Additionally, Dou et al. (2017) investigated the therapeutic po-
tential of BC-02, a conjugation compound of ubenimex and 
5-FU, in the successful inhibition of the growth and self-re-
newal of liver cancer stem cells. Similarly, Sun et al. (2015) 
reported that 4cc, a synthetic inhibitor of aminopeptidase N, 
could increase 5-FU cytotoxicity by generating ROS in human 
liver cancer HCC cells. It remains to be seen whether CD13 
inhibitors can be used to treat cancer cells other than HCC.

CONCLUSION

In this study, we have compiled a list of compounds that 
can be used alone or combined with 5-FU to modulate ROS 
generation. Although the precise mechanisms underlying their 
cytotoxicity remain unknown, several endogenous cellular tar-
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gets have been identified, as described above. These com-
pounds and cellular targets could help develop new strategies 
for combating 5-FU resistance.
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