DOI QR코드

DOI QR Code

교류 흐름 방식을 적용한 암모니아 공급 고체산화물 연료전지의 성능 분석

Performance Analysis of Ammonia-Fed Solid Oxide Fuel Cell Using Alternating Flow

  • 쿠엔 (한국기계연구원 무탄소연료발전연구실) ;
  • 잡반티엔 (한국기계연구원 무탄소연료발전연구실) ;
  • 이동근 (한국기계연구원 무탄소연료발전연구실) ;
  • 이선엽 (과학기술연합대학원대학교 융합기계시스템전공) ;
  • 배용균 (한국기계연구원 무탄소연료발전연구실) ;
  • 안국영 (한국기계연구원 무탄소연료발전연구실) ;
  • 김영상 (한국기계연구원 무탄소연료발전연구실)
  • QUACH, THAI-QUYEN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • GIAP, VAN-TIEN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • LEE, DONG KEUN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • LEE, SUNYOUP (Mechanical Engineering, University of Science and Technology (UST)) ;
  • BAE, YONGGYUN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • AHN, KOOK YOUNG (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • KIM, YOUNG SANG (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
  • 투고 : 2022.08.10
  • 심사 : 2022.10.12
  • 발행 : 2022.10.30

초록

The effect of flow configuration in ammonia-fed solid oxide fuel cell are investigated by using a three-dimensional numerical model. Typical flow configurations including co-flow and counter-flow are considered. The ammonia is directly fed into the stack without any external reforming process, resulting in an internal decomposition of NH3 in the anode electrode of the stack. The result showed that temperature profile in the case of counter-flow is more uniform than the co-flow configuration. The counter-flow cell, the temperature is highest at the middle of the channel while in the case of co-flow, the temperature is continuously increased and reached maximum value at the outlet area. This leads to a higher averaged current density in counter-flow compared to that of co-flow, about 5%.

키워드

과제정보

This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the National Innovation Cluster R&D program (P00015272_Development of Manufacturing Technology for Improving High Temperature Durability and Efficiency of Metal Bipolar for SOFC). This research was also supported by a grant of the Research Program funded by the Korea Institute of Machinery and Materials (project name: Development of an ammonia fuel cell stack and system, grant number: NK237G).

참고문헌

  1. V. T. Giap, Y. D. Lee, Y. S. Kim, T. Q. Quach, and K. Y. Ahn, "Optimal design of RSOFC system coupled with waste steam using ejector for fuel recirculation", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 4, 2019, pp. 303-311, doi: https://doi.org/10.7316/KHNES.2019.30.4.303.
  2. J. Lee, I. T. Pineda, V. T. Giap, D. Lee, Y. S. Kim, K. Y. Ahn, and Y. D. Lee, "Performance prediction model of solid oxide fuel cell stack using deep neural network technique", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 5, 2020, pp. 436-443, doi: https://doi.org/10.7316/KHNES.2020.31.5.436.
  3. T. Bui, Y. S. Kim, V. T. Giap, D. K. Lee, and K. Y. Ahn, "Parametric study on high power SOEC system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 470-476, doi: https://doi.org/10.7316/KHNES.2021.32.6.470.
  4. V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Technoeconomic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
  5. J. Larminie and A. Dicks, "Fuel cell systems explained", 2nd ed, John Wiley & Sons Ltd., USA, 2003.
  6. L. van Biert, T. Woudstra, M. Godjevac, K. Visser, and P. V. Aravind, "A thermodynamic comparison of solid oxide fuel cellcombined cycles", Journal of Power Sources, Vol. 397, 2018, pp. 382396, doi: https://doi.org/10.1016/j.jpowsour.2018.07.035.
  7. Y. D. Lee, "Thermodynamic, economic and environmental evaluation of solid oxide fuel cell hybrid power generation systems", Technische Universitaet Berlin (Germany) ProQuest Dissertations Publishing, 2015. Retrieved from https://www.proquest.com/openview/98713295543a6549761ae814ebd06d4a/1?pqorigsite=gscholar&cbl=2026366.
  8. A. Andrijanovits and V. Beldjajev, "Technoeconomic analysis of hydrogen buffers for distributed energy systems", International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, 2012, pp. 1401-1406, doi: https://doi.org/10.1109/SPEEDAM.2012.6264583.
  9. Y. Guo, Z. Pan, and L. An, "Carbonfree sustainable energy technology: direct ammonia fuel cells", Journal of Power Sources, Vol. 476, 2020, pp. 228454, doi: https://doi.org/10.1016/j.jpowsour.2020.228454.
  10. Z. Wan, Y. Tao, J. Shao, Y. Zhang, and H. You, "Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells", Energy Conversion and Management, Vol. 228, 2021, pp. 113729, doi: https://doi.org/10.1016/j.enconman.2020.113729.
  11. M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, and K. Eguchi, "Development of 1 kWclass ammoniafueled solid oxide fuel cell stack", Fuel Cells, Vol. 20, No. 1, 2020, pp. 80-88, doi: https://doi.org/10.1002/fuce.201900131.
  12. T. Q. Quach, D. K. Lee, K. Y. Ahn, and Y. S. Kim, "Enhancing flow uniformity of gas separator for solid oxide fuel cells by optimizing dimple patterns", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 331-339, doi: https://doi.org/10.7316/KHNES.2021.32.5.331.
  13. Y. J. Kim, H. Yin, H. J. Kim, K. S. Yun, and J. H. Yu, "Numerical analysis on the flow distribution in a 1 kWe SOFC stack of internal manifolds according to the variation of manifold sizes", Trans Korean Hydrogen New Energy Soc, Vol. 33, No. 1, 2022, pp. 47-54, doi: https://doi.org/10.7316/KHNES.2022.33.1.47.
  14. R. W. McCabe, "Kinetics of ammonia decomposition on nickel", Journal of Catalysis, Vol. 79, No. 2, 1983, pp. 445-450, doi: https://doi.org/10.1016/00219517(83)903378.
  15. A. S. Chellappa, C. M. Fischer, and W. J. Thomson, "Ammonia decomposition kinetics over NiPt/Al2O3 for PEM fuel cell applications", Applied Catalysis A: General, Vol. 227, No. 12, 2002, pp. 231-240, doi: https://doi.org/10.1016/S0926860X(01)009413.
  16. B. Ghorbani and K. Vijayaraghavan, "A review study on softwarebased modeling of hydrogenfueled solid oxide fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13700-13727, doi: https://doi.org/10.1016/j.ijhydene.2019.03.217.
  17. W. C. Tan, H. Iwai, M. Kishimoto, and H. Yoshida,"Quasi threedimensional numerical simulation of a solid oxide fuel cell short stack: Effects of flow configurations including airflow alternation", Journal of Power Sources, Vol. 400, 2018, pp. 135-146, doi: https://doi.org/10.1016/j.jpowsour.2018.08.002.