DOI QR코드

DOI QR Code

분리판의 채널 높이에 따른 1 kWe 급 고체산화물 연료전지 스택 수치 해석

Numerical Analysis in a 1 kWe SOFC Stack for Variation of the Channel Height in Separators

  • 윤호원 (한남대학교 기계공학과) ;
  • 김영진 (한남대학교 기계공학과) ;
  • 이근우 (한남대학교 기계공학과) ;
  • 김현진 (한국에너지기술연구원 고온에너지전환연구실) ;
  • 윤경식 (한국에너지기술연구원 고온에너지전환연구실) ;
  • 유지행 (한국에너지기술연구원 고온에너지전환연구실)
  • YIN, HAOYUAN (Department of Mechanical Engineering, Hannam University) ;
  • KIM, YOUNG JIN (Department of Mechanical Engineering, Hannam University) ;
  • YI, KUNWOO (Department of Mechanical Engineering, Hannam University) ;
  • KIM, HYEON JIN (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research) ;
  • YUN, KYONG SIK (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research) ;
  • YU, JI HAENG (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research)
  • 투고 : 2022.07.19
  • 심사 : 2022.10.06
  • 발행 : 2022.10.30

초록

In this study, the flow uniformity was analyzed by performing numerical analysis on the 1 kWe internal manifold type solid oxide fuel cell stack according to the channel height of the separator. Also, it was examined by varying the fuel utilization rate and oxygen utilization rate. From the calculation results, we found that as the channel height of the separator decreased, the pressure drop increased exponentially. In addition, it was found that as the channel height of the separator decreased, the gas flow resistance inside the unit cell increased, and the flow resistance increased the pressure drop, thereby improving the flow uniformity inside the stack. Finally, the calculation results showed that as the fuel and oxygen utilization increased, the flow uniformity also improved.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구이다(과제번호: 20213030030220, 과제명: 캐스케이드 스택을 활용한 10 kWe급 고효율 SOFC 시스템 기술개발).

참고문헌

  1. Y. D. Lee, J. Y. Kim, D. J. Yoo, H. Ju, and H. Kim, "Review of research trend in fuel cell: analysis on fuelcellrelated technologies in electrode, electrolyte, separator plate, stack, system, balance of plant, and diagnosis areas", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 530-545, doi: https://doi.org/10.7316/KHNES.2020.31.6.530.
  2. N. Park and H. Kim, "Analysis of R&D investment for hydrogen and fuel cell", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 2, 2010, pp. 143-148. Retrieved from https://koreascience.kr/article/JAKO201027463260138.pdf. 1027463260138.pdf
  3. V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Technoeconomic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
  4. R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, "Fuel cell fundamentals", Wiley, USA, 2016, doi: https://doi.org/10.1002/9781119191766.
  5. A. L. Dicks and D. A. J. Rand, "Fuel cell systems explained", Wiley, USA, 2018, doi: https://doi.org/10.1002/9781118706992.
  6. Y. J. Kim, H. Yin, H. J. Kim, K. S. Yun, and J. H. Yu, "Numerical analysis on the flow distribution in a 1 kWe SOFC stack of internal manifolds according to the variation of manifold sizes", Trans Korean Hydrogen New Energy Soc, Vol. 33, No. 1, 2022, pp. 47-54, doi: https://doi.org/10.7316/KHNES.2022.33.1.47.
  7. S. K. Dong, W. N. Jung, K. Rashid, and A. Kashimoto, "Design and numerical analysis of a planar anode-sup-ported SOFC stack", Renew. Energy, Vol. 94, 2016, pp. 637-650, doi: https://doi.org/10.1016/j.renene.2016.03.098.
  8. B. H. Jhung, Y. J. Sohn, and S. G. Kim, "Flow analysis in PEMFC stack for variation of channel width between cells", Trans. Korean Soc. Mech. Eng., Vol. 44, No. 4, 2020, pp. 265-271, doi: https://doi.org/10.3795/KSMEB.2020.44.4.265.
  9. K. Wang, D. Hissel, M. C. Pera, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, and J. Saarinene, "A review on solid oxide fuel cell models", Int. J. Hydrogen Energy, Vol. 36. No. 12, 2011, pp. 7212-7228, doi: https://doi.org/10.1016/j.ijhydene.2011.03.051.
  10. M. A. Ashraf, K. Rashid, I. Rahimipetroudi, H. J. Kim, and S. K. Dong, "Analyzing different planar biogasfueled SOFC stack designs and their effects on the flow uniformity", Energy, Vol. 190, 2020, pp. 116450, doi: https://doi.org/10.1016/j.energy.2019.116450.
  11. X. Wu, J. Jiang, W. Zhao, X. Li, and J. Li, "Twodimensional temperature distribution estimation for a crossflow planar solid oxide fuel cell stack", Int. J. Hydrogen Energ., Vol. 45, No. 3, 2020, pp. 22572278, doi: https://doi.org/10.1016/j.ijhydene.2019.11.091.
  12. ANSYS, "ANSYS fluent user's guide", ANSYS, 2021. Retrieved from http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%Fluent%Users%Guide.pdf.