DOI QR코드

DOI QR Code

LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가

Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites

  • 황준현 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • HWANG, JUNE-HYEON (Department of Energy Materials Science & Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Energy Materials Science & Engineering, Korea National University of Transportation)
  • 투고 : 2022.08.23
  • 심사 : 2022.10.20
  • 발행 : 2022.10.30

초록

A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(2019R1F1A1041405)와 교육부가 지원하는 한국기초과학지원연구원을 통한 기초과학연구역량강화사업(국가연구시설장비진흥센터, 2019R1A6C1010047)의 지원에 의해 수행되었으며, 이에 감사드립니다.

참고문헌

  1. J. Rockstrom, G. Brasseur, B. Hoskins, W. Lucht, J. Schellnhuber, P. Kabat, N. Nakicenovic, P. Gong, P. Schlosser, M. M. Costa, A. Humble, N. Eyre, P. Gleick, R. James, A. Lucena, O. Masera, M. Moench, R. Schaeffer, S. Seitzinger, S. van der Leeuw, B. Ward, N. Stern, J. Hurrell, L. Srivastava, J. Morgan, C. Nobre, Y. Sokona, R. Cremades, E. Roth, D. Liverman, and J. Arnott, "Climate change: the necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment", Earth's Future, Vol. 2, No. 12, 2014, pp. 606-611, doi: https://doi.org/10.1002/2014EF000280.
  2. J. A. Lowe and D. Bernie, "The impact of Earth system feed backs on carbon budgets and climate response", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, No. 2119, 2018, pp. 20170263, doi: https://doi.org/10.1098/rsta.2017.0263.
  3. L. A. GilAlana and M. Monge, "Lithium: production and estimated consumption. Evidence of persistence", Resources Policy, Vol. 60, 2019, pp. 198-202, doi: https://doi.org/10.1016/j.resourpol.2019.01.006.
  4. M. Gutsch and J. Leker, "Global warming potential of lithiumion battery energy storage systems: a review", Journal of Energy Storage, Vol. 52, 2022, pp. 105030, doi: https://doi.org/10.1016/j.est.2022.105030.
  5. B. Jaskula, "Mineral commodity summaries 2017", U. S. Geological Survey. Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/lithium/.
  6. M. Y. Cho and J. W. Jo, "Safe storage rack to prevent fire propagation when lithium batteries, powered by drones, are fired", Journal of Digital Contents Society, Vol. 22, No. 7, 2021, pp. 1125-1133, doi: https://doi.org/10.9728/dcs.2021.22.7125.
  7. J. Kim, J. Oh, J. Y. Kim, Y. G. Lee, and K. M. Kim, "Recent progress and perspectives of solid electrolytes for lithiumrechargeable batteries", Journal of the Korean Electrochemical Society, Vol. 22, No. 3, 2019, pp. 87-103, doi: https://doi.org/10.5229/JKES.2019.22.3.87.
  8. A. Hayashi, A. Sakuda, and M. Tatsumisago, "Development of sulfide solid electrolytes and interface formation processes for bulktype allsolidstate Li and Na batteries", Frontiers in Energy Research, Vol. 4, 2016, pp. 25, doi: https://doi.org/10.3389/fenrg.2016.00025.
  9. Y. Zhang, M. X. Xie, W. Zhang, J. L. Yan, and G. Q. Shao, "Synthesis and purification of SiS2 and Li2S for Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte in Lithiumion batteries", Materials Letters, Vol. 266, 2020, pp. 127508, doi: https://doi.org/10.1016/j.matlet.2020.127508.
  10. M. Matsuo, Y. Nakamori, and S. Orimo, "Lithium superionic conduction in lithium borohydride accompanied by structural transition", Applied Physics Letters, Vol. 91, No. 22, 2007, pp. 224103, doi: https://doi.org/10.1063/1.2817934.
  11. J. C. Fallas, W. M. Chien, D. Chandra, V. K. Kamisetty, E. D. Emmons, A. M. Covington, R. Chellappa, S. A. Gramsch, R. J. Hemley, and H. Hagemann, "Raman spectroscopy measurements of the pressuretemperature behavior of LiAlH4", J. Phys. Chem. C, Vol. 114, No. 27, 2020, pp. 11991-11997, doi: https://doi.org/10.1021/jp1015017.
  12. Y. Nakagawa, T. Kimura, S. Isobe, and T. Shibayama, "Effects of defective boron nitride additives on lithiumion conductivity and hydrogendesorption properties of LiAlH4", J. Phys. Chem. C, Vol. 124, No. 19, 2020, pp. 10398-10407, doi: https://doi.org/10.1021/acs.jpcc.0c02312.
  13. Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen, and M. Chen, "Advances and prospects of PVDF based polymer electrolytes", Journal of Energy Chemistry, Vol. 64, 2022, pp. 62-84, doi: https://doi.org/10.1016/j.jechem.2021.04.007.
  14. J. Cheng, W. Bao, D. Zhu, C. Tian, Q. Yin, and M. Ding, "Preparation of CE0.8GD0.2O1.9 solid electrolyte by the solcombustion method", J. Chil. Chem. Soc., Vol. 54, No. 4, 2009, pp. 445-447, doi: http://dx.doi.org/10.4067/S071797072009000400027.
  15. M. C. Pang, K. Yang, R. Brugge, T. Zhang, X. Liu, F. Pan, S. Yang, A. Aguadero, B. Wu, M. Marinescu, H. Wang, and G. J. Offer, "Interactions are important: linking multiphysics mechanisms to the performance and degradation of solidstate batteries", Materials Today, Vol. 49, 2021, pp. 145-183, doi: https://doi.org/10.1016/j.mattod.2021.02.011.
  16. G. C. Gerrans, R. HartmannPetersen, and P. Hartmann Petersen, "Sasol science and technology encyclopaedia book", New Africa Education Publishing, South Africa, 2004, pp. 143.
  17. C. H. Chen, J. Liu, and K. Amine, "Symmetric cell approach and impedance spectroscopy of high power lithiumion batteries", Journal of Power Sources, Vol. 96, No. 2, 2001, pp. 321-328, doi: https://doi.org/10.1016/S03787753(00)006662.
  18. L. Wang and K. F. AgueyZinsou, "Synthesis of LiAlH4 nanoparticles leading to a single hydrogen release step upon Ti coating", Inorganics, Vol. 5, No. 2, 2017, pp. 38, doi: https://doi.org/10.3390/inorganics5020038.
  19. F. A. Cotton, G. Wilkinson, and P. L. Gaus, "Basic inorganic chemistry", 3rd ed, John Wiley & Sons, USA, 1995, pp. 8.
  20. J. R. Ares, K. F. AgueyZinsou, M. Porcu, J. M. Sykes, M. Dornheim, T. Klassen, and R. Bormann, "Thermal and mechanically activated decomposition LiAlH4", Materials Research Bulletin, Vol. 43, No. 5, 2008, pp. 1263-1275, doi: https://doi.org/10.1016/j.materresbull.2007.05.018.
  21. H. Oguchi, M. Matsuo, T. Sato, H. Takamura, H. Maekawa, H. Kuwano, and S. Orimo, "Lithiumion conduction in complex hydrides LiAlH4 and Li3AlH6", Vol. 107, 2010, pp. 096104, doi: https://doi.org/10.1063/1.3356981.
  22. A. Magistris, P. Mustarelli, F. Parazzoli, E. Quartarone, P. Piaggio, and A. Bottino, "Structure, porosity and conductivity of PVdF films for polymer electrolytes", Journal of Power Sources, Vol. 9798, 2001, pp. 657-660, doi: https://doi.org/10.1016/S03787753(01)006449.
  23. G. L. Ji, B. K. Zhu, Z. Y. Cui, C. F. Zhang, and Y. Y. Xu, "PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ionbattery", Polymer, Vol. 48, No. 21, 2007, pp. 6415-6425, doi: https://doi.org/10.1016/j.polymer.2007.08.049.
  24. X. Liang, D. Han, Y. Wang, L. Lan, and J. Mao, "Preparation and performance study of a PVDF-LATP ceramic composite polymer electrolyte membrane for solidstate batteries", RSC Advances, Vol. 8, No. 71, 2018, pp. 40498-40504, doi: https://doi.org/10.1039/C8RA08436J.
  25. W. Yang, S. Sokhansanj, J. Tang, and P. Winter, "PH-post-harvest technology: determination of thermal conductivity, specific heat and thermal diffusivity of borageseeds", Biosystems Engineering, Vol. 82, No. 2, 2002, pp. 169-176, doi: https://doi.org/10.1006/bioe.2002.0066.
  26. R. Bock, M. Onsrud, H. Karoliussen, B. G. Pollet, F. Seland, and O. S. Burheim, "Thermal gradients with sintered solid state electrolytes in lithiumion batteries", Energies, Vol. 13, No. 1, 2020, pp. 253, doi: https://doi.org/10.3390/en13010253.
  27. J. J. Lin and C. Y. Wu, "Disorder dependence of electronphonon scattering time in bulk Ti1-xAlx Alloys", Europhysics Letters, Vol. 29, No. 2, 1995, pp. 141. Retrieved from https://iopscience.iop.org/article/10.1209/02955075/29/2/006/meta.