DOI QR코드

DOI QR Code

Coating behavior of zirconia film fabricated by granule spray in vacuum

상온진공 과립분사에 의한 지르코니아 필름의 코팅거동

  • Tungalaltamir, Ochirkhuyag (Department of Materials Science and Engineering, Pukyong National University) ;
  • Kang, Young-Lim (Department of Materials Science and Engineering, Pukyong National University) ;
  • Park, Woon-Ik (Department of Materials Science and Engineering, Pukyong National University) ;
  • Park, Dong-Soo (Functional Materials Group, Korea Institute of Machinery and Materials) ;
  • Park, Chan (Department of Materials Science and Engineering, Pukyong National University)
  • ;
  • 강영림 (부경대학교 재료공학과) ;
  • 박운익 (부경대학교 재료공학과) ;
  • 박동수 (재료연구소 기능성재료그룹) ;
  • 박찬 (부경대학교 재료공학과)
  • Received : 2022.09.14
  • Accepted : 2022.09.22
  • Published : 2022.10.31

Abstract

The Granule Spray in Vacuum (GSV) process is a method of forming a dense nanostructured ceramic coating film by spraying ceramic granules on a substrate at room temperature in a vacuum. In the Granule Spray, the granules made by agglomerating particles with the size from submicrometer to micrometer can be sprayed into the substrate. Once the granules were squashed upon collision with the substrate, they become several dozens of nanometer-sized crystals in vacuum process. The zirconia of the monoclinic phase transform into tetragonal phase at 1150℃. At this time, its volume is changed by about 6.5 %. For this reason, it is widely held that it is difficult to acquire a compact of monoclinic zirconia sinter. In this study, the effect of particle treatment temperature and standoff distance on the substrate of zirconia granules were investigated in GSV. Also, particle treatment temperature, standoff distance, coating efficiency, and microstructure of the film were considered in forming the monoclinic zirconia coating film in GSV without any heating process. The deposited films exhibited monoclinic zirconia phase without any other detectable phase by X-ray diffractometer (XRD).

GSV (Granule Spray in Vacuum)는 상온의 진공하에서 나노 크기의 치밀한 세라믹 코팅층을 형성하는 방법이다. 일반적으로, 단사정의 지르코니아는 1150℃에서 정방정으로 변태하며, 이때 6.5 %의 체적변화를 일으켜 치밀한 단사정의 지르코니아를 만들기 어렵다. 본 연구에서는 코팅 효율에 대한 두 가지 처리 변수의 효과를 조사하는 데 중점을 두었다. 아울러, 특별한 가열과정 없이 형성된 필름의 미세구조에 관찰하였다. 샘플 기판에 증착된 지르코니아 필름에 대한 X-ray diffractometer (XRD) 분석은 단사정 지르코니아 필름이 성공적으로 증착되었음을 보여주었다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

References

  1. B.D. Hahn, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee and H.E. Kim, "Effect of the HA/β-TCP ratio on the biological performance of calcium phosphate ceramic coatings fabricated by a room-temperature powder spray in vacuum", J. Am. Ceram. Soc. 92 (2009) 793. https://doi.org/10.1111/j.1551-2916.2009.02949.x
  2. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin and H.E. Kim, "Mechanical and in vitro biological performances of hydroxy-apatite carbon nanotube composite coatings deposited on Ti by aerosol deposition", Acta Biomaterialia. 5 (2009) 3205. https://doi.org/10.1016/j.actbio.2009.05.005
  3. J.H. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon and K.H. Kim, "Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thin film by aerosol-deposition", Appl. Phys. Lett. 90 (2007) 152901. https://doi.org/10.1063/1.2720751
  4. B.D. Hahn, K.H. Ko, D.S. Park, J.J. Choi, W.H. Yoon, C. Park and D.Y. Kim, "Effect of post-annealing on the microstructure and electrical properties of PMN-PZT films prepared by aerosol deposition process (in Korean)", J. Korean Ceram. Soc. 43 (2006) 106. https://doi.org/10.4191/KCERS.2006.43.2.106
  5. J.J. Choi, J.H. Jang, D.S. Park, B.D. Hahn, W.H. Yoon and C. Park, "Electrical properties of lead zinc niobate lead zirconate titanate thick films formed by aerosol deposition process", Solid State Phenomena. 124-126 (2007) 169. https://doi.org/10.4028/www.scientific.net/SSP.124-126.169
  6. S. Sugimoto, T. Maeda, R. Kobayashi, J. Akedo, M. Lebedev and K. Inomata, "Magnetic properties of Sm-Fe-N thick film magnets prepared by the aerosol deposition method", Transactions on Magnetics 39 (2003) 2986. https://doi.org/10.1109/TMAG.2003.816715
  7. J.J. Choi, J.H. Lee, D.S. Park, B.D. Hahn, W.H. Yoon and H.T. Lin, "Oxidation resistant coating of LSM and LSCF on SOFC metallic interconnects by aerosol deposition process", J. Am. Ceram. Soc. 90 (2007) 1926. https://doi.org/10.1111/j.1551-2916.2007.01641.x
  8. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H Yoon, B.K. Lee, D.S. Shin and H.E. Kim, "Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications", Thin Solid Films 518 (2010) 2194. https://doi.org/10.1016/j.tsf.2009.09.024
  9. A.E. Porter, P. Taak, L.W. Hobbs, M.J. Coathup, G.W. Blunn and M. Spector, "Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy", Biomaterials 25 (2004) 5199. https://doi.org/10.1016/j.biomaterials.2003.12.018
  10. L. Sun, C.C. Berndt, K.A. Gross and A. Kucuk, "Material fundamental sand clinical performance of plasma sprayed hydroxyapatite coatings: A review", J. Biomed. Mater. Res. 58 (2001) 570. https://doi.org/10.1002/jbm.1056
  11. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel and R. Bizios, "Enhanced functions of osteoblasts on nanophase ceramics", Biomaterials 21 (2000) 1803. https://doi.org/10.1016/S0142-9612(00)00075-2
  12. S.D. Johnson, D. Schwer, D.S. Park, Y.S. Park and E.P. Gorzkowski, "Deposition efficiency of barium hexaferrite by aerosol deposition", Surf. Coatings Technol. 332 (2017) 542. https://doi.org/10.1016/j.surfcoat.2017.06.085
  13. G. Quinn, J. Eichler, U. Eisele and J. Rodel, "Fracture Mirrors in a Nanoscale 3Y-TZP", Am. Ceram. Soc. 87 (2004) 513. https://doi.org/10.1111/j.1551-2916.2004.00513.x
  14. J. Akedo, "Ceramic coating at room temperature with aerosol deposition method", J. Vac. Soc. Jpn. 54 (2011) 118. https://doi.org/10.3131/jvsj2.54.118