DOI QR코드

DOI QR Code

고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity

  • 고재은 (조선대학교 첨단소재공학과) ;
  • 이종국 (조선대학교 첨단소재공학과)
  • Go, Jaeeun (Department of Advanced Materials and Engineering, Chosun University) ;
  • Lee, Jong Kook (Department of Advanced Materials and Engineering, Chosun University)
  • 투고 : 2022.09.27
  • 심사 : 2022.10.07
  • 발행 : 2022.10.31

초록

치과용 임플란트 재료로 주로 사용되는 지르코니아 및 티타늄 합금은 생체불활성 특징으로 인하여 골유착 및 골형성 능력이 떨어진다. 이러한 문제를 쉽고 간단하게 해결하기 위한 방법으로는 생체활성 물질을 표면에 코팅하여 생체 활성을 높이는 방법이 있다. 본 연구에서는 우수한 골결합 능력을 가진 실리케이트계 세라믹인 아커마나이트(Ca2MgSi2O7)를 고상반응법으로 합성하고, SBF 용액 내 침적실험을 통하여 합성 아커마나이트 분말의 생체활성을 분석하였다. 고상반응 출발원료로는 탄산칼슘(CaCO3), 탄산마그네슘(MgCO3), 이산화규소(SiO2) 분말을 사용하였다. 분말을 혼합 및 건조한 후, 가압 성형하여 디스크 형태로 만든 후, 고상반응 온도를 변화시키며 아커마나이트 상의 합성을 유도하였다. 합성된 아커마나이트 펠릿의 용해 및 생체활성 분석을 위하여 SBF 용액 내 침적 시키고, 침적시간에 따라 아커마나이트의 표면 용해 및 하이드록시아파타이트 석출을 분석하였다. 합성반응 온도가 높아질수록 아커마나이트 상이 뚜렷하게 나타난 반면에, SBF 용액 내 용해는 천천히 진행되었다. 합성된 아커마나이트 분말의 생체활성도는 대체적으로 우수하였으나, 그 중에서도 1100℃에서 고상반응 하여 합성한 분말에서 적절한 용해 및 하이드록시아파타이트 입자의 석출이 잘 일어나는 것으로 분석되었다.

Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

키워드

과제정보

본 연구는 2021년도 조선대학교 연구비 지원에 이루어졌음.

참고문헌

  1. A.L.R. Pires, A.C. K. Bierhalz and A.M. Moraes, "Biomaterials: Types, applications, and market", Quim Nova. 38 (2015) 957.
  2. S. Yadav and S. Gangwar, "An overview on recent progresses and future perspective of biomaterials", IOP Conf. Ser. Mater. Sci. Eng. 404 (2018) 012013. https://doi.org/10.1088/1757-899X/404/1/012013
  3. S. Kargozar, S. Ramakrichna and M. Mozafari, "Chemistry of biomaterials: Future prospects", Curr. Opin. Biomed. Eng. 10 (2019) 181. https://doi.org/10.1016/j.cobme.2019.07.003
  4. S. Prasad, M. Ehrensberger, M.P. Gibson, H. Kim and E.A. Monaco, "Biomaterial properties of titanium in dentistry", J. Oral Biosci. 57 (2015) 192. https://doi.org/10.1016/j.job.2015.08.001
  5. Q. Fu, Y. Hong, X. Liu, H. Fan and X. Zhang, "A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone", Biomaterials 32 (2011) 7333. https://doi.org/10.1016/j.biomaterials.2011.06.051
  6. K. Hayashi, T. Inadome, H. Tsumura, T. Mashima and Y. Sugioka, "Bone-implant interface mechanics of in vivo bio-inert ceramics", Biomaterials 14 (1993) 1173. https://doi.org/10.1016/0142-9612(93)90163-V
  7. D. Chopra, A. Jayasree, T. Guo, K. Gulati and S. Ivanovski, "Advancing dental implants: Bioactive and therapeutic modifications of zirconia", Bioact. Mater. 13 (2022) 161. https://doi.org/10.1016/j.bioactmat.2021.10.010
  8. H. Sato, K. Yamada, G. Pezzotti, M. Nawa and S. Ban, "Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment", Dent. Mater. J. 27 (2008) 408. https://doi.org/10.4012/dmj.27.408
  9. R. Gruber, E. Hedbom, D.D. Bosshardt, R. Heuberger and D. Buser, "Acid and alkali etching of grit blasted zirconia: Impact on adhesion and osteogenic differentiation of MG63 cells in vitro", Dent. Mater. J. 31 (2012) 1097. https://doi.org/10.4012/dmj.2012-107
  10. H.C. Lai, L.F. Zhuang, Z.Y. Zhang and X. Liu, "Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: An experimental study in dogs", Clin. Oral Implants Res. 20 (2009) 247. https://doi.org/10.1111/j.1600-0501.2008.01651.x
  11. M. Khodaei, M. Meratian, O. Savabi, M. Fathi and H. Ghomi, "The side effects of surface modification of porous titanium implant using hydrogen peroxide: Mechanical properties aspects", Mater. Lett. 178 (2016) 201. https://doi.org/10.1016/j.matlet.2016.04.210
  12. G.P. Jayaswal, S.P. Dange and A.N. Khalikar, "Bioceramic in dental implants: A review", J. Indian Prosthodont. Soc. 10 (2010) 8. https://doi.org/10.1007/s13191-010-0002-4
  13. E. Pecheva, L. Pramatarova, D. Fingarova, T. Hikov, I. Dineva, Z. Karagyozova and S. Stavrev, "Advanced materials for metal implant coating", J. Optoelectron Adv. M. 11 (2009) 1323.
  14. S. Overgaard, "Calcium phosphate coatings for fixation of bone implants", Acta Orthop Scand (Suppl 297). 71 (2000) 1. https://doi.org/10.1080/000164700753759574
  15. M.S. Zafar, I. Farooq, M. Awais, S. Najeeb, Z. Khurshid and S. Zohaib, "Biomedical, therapeutic and clinical applications of bioactive glasses". G. Kaur, Ed., (Woodhead Publishing, United Kingdom, 2019) p. 313.
  16. R.Z. LeGeros and J.P. LeGeros, "Calcium phosphate bioceramics: Past, present and future", Key Eng. 240-242 (2003) 3. https://doi.org/10.4028/www.scientific.net/KEM.240-242.3
  17. A. Carrado and M. Viart, "Nanocrystalline spin coated sol-gel hydroxyapatite thin films on Ti substrate: Towards potential applications for implants", Solid State Sci. 12 (2010) 1047. https://doi.org/10.1016/j.solidstatesciences.2010.04.014
  18. J. Go and J.K. Lee, "Improvement of bioactivity on zirconia substrate by wollastonite slurry/spin coating", J. Ceram. Process Res. 23 (2022) 292.
  19. D.M. Miu, S.I. Jinga, G. Voicu and F. Iordache, "Characteristics of wollastonite ceramic coatings obtained by pulsed laser deposition", J. Inorg. Organomet P. 31 (2020) 1601.
  20. J. Xie, X. Yang, H. Shao, J. Ye, Y. He, J. Fu, C. Gao and Z. Gou, "Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping", Materials 54 (2016) 60.
  21. H.C. Li, D.G. Wang and C.Z. Chen, "Effect of sodium oxide and magnesia on structure, in vitro bioactivity and degradability of wollastonite", Mater. Lett. 135 (2014) 237. https://doi.org/10.1016/j.matlet.2014.07.177
  22. S.H. Ahn, D.S. SeO and J.K. Lee, "Fabrication of dense β-wollastonite bioceramics by MgSiO3 addition", J. Ceram. Process Res. 16 (2015) 548. https://doi.org/10.36410/JCPR.2015.16.5.548
  23. F. Tavangarian, C.A. Zolko, A. Fahami, A. Forghani and D. Hayes, "Facile synthesis and structural insight of nanostructure akermanite powder", Ceram. Int. 45 (2019) 7871. https://doi.org/10.1016/j.ceramint.2019.01.097
  24. W. Zhai, H. Lu, C. Wu, L. Chen, X. Lin, K. Naoki, G. Chen and J. Chang, "Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro", Acta Biomater. 9 (2013) 8004. https://doi.org/10.1016/j.actbio.2013.04.024
  25. C. Wu and J. Chang, "Synthesis and apatite-formation ability of akermanite", Mater. Lett. 58 (2004) 2415. https://doi.org/10.1016/j.matlet.2004.02.039
  26. V.B. Bhatkar and N.V. Bhatkar, "Combustion synthesis and photoluminescence study of silicate biomaterials", B. Mater. Sci. 34 (2011) 1281. https://doi.org/10.1007/s12034-011-0166-5
  27. A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, "Preparation and assessment of revised simulated body fluids", J. Biomed. Mater. Res. 65A (2003) 188. https://doi.org/10.1002/jbm.a.10482
  28. J.H. Park, "Structure-property relationship of CaO-MgO-SiO2 slag: Quantitative analysis of raman spectra", Metall. Mater. Trans. B. 44 (2013) 938. https://doi.org/10.1007/s11663-013-9825-9
  29. K. Marzban, "Preparation and characterization of nanostructure akermanite powder by mechanical activation method", Nanomed. Res. 1 (2016) 79.
  30. F. Baino and S. Yamaguchi, "The use of simulated body fluid (SPF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges", Biomimetics 5 (2020) 57. https://doi.org/10.3390/biomimetics5040057
  31. M. Mozafari, S. Banijamali, F. Baino, S. Kargozar and R.G. Hill, "Calcium carbonate: Adored and ignored in bioactivity assessment", Acta Biomater. 91 (2019) 35. https://doi.org/10.1016/j.actbio.2019.04.039
  32. X. Wan, C. Chang, D. Mao, L. Jiang and M. Li, "Preparation and in vitro bioactivities of calcium silicate nanophase materials", Mater. Sci. Eng. C. 25 (2005) 455. https://doi.org/10.1016/j.msec.2004.12.003