DOI QR코드

DOI QR Code

Bioactivity enhancement of zirconia substrate by surface coating of diopside bioceramics using sol-gel method

솔젤법에 의한 다이옵사이드 생체 세라믹의 표면코팅 및 지르코니아 기판의 생체활성 증진

  • Park, Hyunjung (Department of Advanced Materials and Engineering, Chosun University) ;
  • Lee, Jong Kook (Department of Advanced Materials and Engineering, Chosun University)
  • 박현정 (조선대학교 첨단소재공학과) ;
  • 이종국 (조선대학교 첨단소재공학과)
  • Received : 2022.09.27
  • Accepted : 2022.10.07
  • Published : 2022.10.31

Abstract

Diopside (CaMgSi2O6) is known to have high bioactivity as well as excellent mechanical properties. In this study, we tried to improve the bioactivity of zirconia ceramics by surface coating of diopside and its bioactivity was investigated through an in vitro test. Surface coating on zirconia substrate was prepared by sol-gel method using a diopside sol which was prepared by dissolving Ca(NO3)2·4H2O, MgCl2·6H2O and Si(OC2H5)4 in ethanol with a fixed molar ratio and then hydrolysis. To examine the bioactivity of diopside coating, we examined the surface dissolution and the precipitation of new hydroxyapatite particles through in vitro test in SBF (Simulated Body Fluid) solution. Dense and thick diopside coating layers could be fabricated on zirconia substrate by sol-gel method. Also, we confirmed that they contained high bioactivity from the in vitro test, indicated the precipitation of hydroxyapatite particles after the 14 days immersion in SBF solution. In addition, we checked that the bioactivity of diopside coated layers was dependent on the repeated coating cycle and coating thickness.

다이옵사이드(CaMgSi2O6)는 생체활성이 높을 뿐만 아니라 우수한 기계적 성질도 보유한 물질로 알려져 있다. 본 연구에서는 지르코니아 세라믹스의 생체활성을 향상시키기 위하여 지르코니아 기판 표면에 다이옵사이드를 솔젤법으로 코팅하고 in vitro 시험을 통해 지르코니아 기판의 생체활성 증진을 고찰하였다. 코팅용 다이옵사이드 솔은 Ca(NO3)2·H2O, MgCl2·H2O 및 Si(OC2H5)4를 각각의 몰비로 에탄올에 용해한 후 가수분해시켜 제조하였다. 다이옵사이드 코팅에 의한 생체활성 증진을 고찰하기 위하여 SBF 용액 내에서 in vitro 시험을 진행하였는데, 침적초기에는 주로 코팅층 다이옵사이드 입자들의 표면용해가 관찰되었고, 새로운 하이드록시아파타이트 입자의 석출은 14일 침적시편에서 주로 관찰되었다. In vitro 시험 시 SBF(Simulated Body Fluid) 용액에 대한 다이옵사이드 코팅층의 용해와 기판 표면에 석출되는 하이드록시아파타이트 층의 양과 형태는 코팅횟수와 코팅층 두께에 의존하였다.

Keywords

Acknowledgement

본 연구는 2022년도 조선대학교 연구비 지원에 이루어졌음.

References

  1. I. Denry and J.R. Kelly, "State of the art of zirconia for dental applications", Dent. Mater. 24 (2008) 299. https://doi.org/10.1016/j.dental.2007.05.007
  2. R.B. Osman and M.V. Swain, "A critical review of dental implant materials with an emphasis on titanium versus zirconia", Materials (Basel). 8 (2015) 932. https://doi.org/10.3390/ma8030932
  3. Z. Ozkurt and E. Kazazoglu, "Zirconia dental implants: a literature review", J. Oral. Implantol. 37 (2011) 367. https://doi.org/10.1563/AAID-JOI-D-09-00079
  4. R.B. Osman, M.V. Swain, M. Atieh, S. Ma and W. Duncanl, "Ceramic implants (Y-TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial", Clin. Oral. Implant. Res. 25 (2014) 1366. https://doi.org/10.1111/clr.12272
  5. M. Hisbergues, S. Vendeville and P. Vendeville, "Zirconia: Established facts and perspectives for a biomaterial in dental implantology", J. Biomed. Mater. Res. B. Appl. Biomater. 88 (2009) 519.
  6. M. Dehestani, L. Ilver and E. Adolfsson, "Enhancing the bioactivity of zirconia and zirconia composites by surface modification", J. Biomed. Mater. Res. B. Appl. Biomater. 100B (2012) 832. https://doi.org/10.1002/jbm.b.32647
  7. F.H. Schunemann, M.E. Galarraga-Vinueza, R. Magini, M. Fredel, F. Silva, J.C.M. Souza, Y. Zhang and B. Henriques, "Zirconia surface modifications for implant dentistry", Mater. Sci. Eng. C. Mater. Biol. Appl. 98 (2019) 1294. https://doi.org/10.1016/j.msec.2019.01.062
  8. D.W. Suh, Y.K. Kim and Y.J. Yi, "A review of biocompatibility of zirconia and bioactivity as a zirconia implant: In vivo experiment", J. Korean Acad. Prosthodont. 57 (2019) 88. https://doi.org/10.4047/jkap.2019.57.1.88
  9. G. Soon, B. Pingguan-Murphy, K.W. Lai and S.A. Akbar, "Review of zirconia-based bioceramic: Surface modification and cellular response", Ceram. Int. 42 (2016) 12543. https://doi.org/10.1016/j.ceramint.2016.05.077
  10. M. Guazzato, M. Albakry, L. Quach and M.V. Swain, "Influence of grinding, sandblasting, polishing and heat treatment on the flexural strength of a glass-infiltrated alumina-reinforced dental ceramic", Biomater. 25 (2004) 2153. https://doi.org/10.1016/j.biomaterials.2003.08.056
  11. D. Arcos and M. Vallet-Regi, "Substituted hydroxyapatite coatings of bone implants", J. Mater. Chem. B. 8 (2020) 1781. https://doi.org/10.1039/c9tb02710f
  12. Z. Chen, J. Zhai, D. Wang and C. Chen, "Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser", Ceram. Int. 44 (2018) 10204. https://doi.org/10.1016/j.ceramint.2018.03.013
  13. M. Jarcho, "Calcium phosphate ceramics as hard tissue prosthetics", Clin. Orthop. Relat. Res. 157 (1981) 259. https://doi.org/10.1097/00003086-198106000-00037
  14. P. Ducheyne and Q. Qiu, "Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function", Biomater. 20 (1999) 2287. https://doi.org/10.1016/S0142-9612(99)00181-7
  15. L. Yubao, Z. Xingdong and K.d. Groot, "Hydrolysis and phase transition of alpha-tricalcium phosphate", Biomater. 18 (1997) 737. https://doi.org/10.1016/S0142-9612(96)00203-7
  16. K. Lin, W. Zhai, S. Ni, J. Chang, Y. Zeng and W. Qian, "Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics", Ceram. Inter. 31 (2005) 323. https://doi.org/10.1016/j.ceramint.2004.05.023
  17. C. Wu and J. Chang, "Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics", J. Biomed. Mater. Res. B. Appl. Biomater. 83 (2007) 153.
  18. N.Y. Iwata, G.H. Lee, S. Tsunakawa, Y. Tokuoka and N. Kawashima, "Preparation of diopside with apatite-forming ability by sol-gel process using metal alkoxide and metal salts", Coll. Surf. B. Biointerfaces. 33 (2004) 1. https://doi.org/10.1016/j.colsurfb.2003.07.004
  19. H. Ghomi, R. Emadi and S.H. Javanmard, "Fabrication and characterization of nanostructure diopsde scaffolds using the space holder method: Effect of different space holders and compaction pressures", Mater. Des. 91 (2016) 193. https://doi.org/10.1016/j.matdes.2015.11.078
  20. J.S. Kim, "Tendency of PVD coating technology on Metal cutting tools", J. Korean Soc. Precis. Eng. 18 (2001) 11.
  21. X. Wan g, M. Wan g, H. Son g an d B. Din g, "A simple sol-gel technique for preparing lanthanum oxide nanopowders", Mater. Lett. 60 (2006) 2261. https://doi.org/10.1016/j.matlet.2005.12.142
  22. M.H. Fathi and A. Hanifi, "Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method", Mater. Lett. 61 (2007) 3978. https://doi.org/10.1016/j.matlet.2007.01.028
  23. A.E. Alecu, C.C. Costea, V.A. Surdu, G. Voicu, S.I. Jinga and C. Busuioc, "Processing of calcium magnesium silicates by the sol-gel route", Gels. 574 (2022) 8.
  24. P. Choudhury and D.C. Agrawal, "Sol-gel derived hydroxyapatite coatings on titanium substrates", Surf. Coat. Technol. 206 (2011) 360. https://doi.org/10.1016/j.surfcoat.2011.07.031