DOI QR코드

DOI QR Code

탄화규소 단결정 성장을 위한 종자결정모듈의 탄화규소-흑연 간 접합계면의 기계적 특성 평가

Mechanical evaluation of SiC-graphite interface of seed crystal module for growing SiC single crystals

  • 강준혁 (한국세라믹기술원 반도체소재센터) ;
  • 김용현 (한국세라믹기술원 반도체소재센터) ;
  • 신윤지 (한국세라믹기술원 반도체소재센터) ;
  • 배시영 (한국세라믹기술원 반도체소재센터) ;
  • 장연숙 (동의대학교 신소재공학과) ;
  • 이원재 (동의대학교 신소재공학과) ;
  • 정성민 (한국세라믹기술원 반도체소재센터)
  • Kang, June-Hyuk (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yong-Hyeon (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Yun-Ji (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Yeon-Suk (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Lee, Won-Jae (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jeong, Seong-Min (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2022.08.23
  • 심사 : 2022.09.22
  • 발행 : 2022.10.31

초록

고온의 탄화규소 단결정성장공정에서는 탄화규소-흑연간의 열팽창계수의 차이로 인한 열응력이 크게 발생할 수 있어 흑연부재로부터 탄화규소 종자정이 분리되어 성장 중에 종자정이 떨어지는 문제가 발생할 수 있다. 그러나 이러한 탄화규소 종자정 모듈의 접합특성에 대한 연구는 현재까지 거의 보고된 바가 없다. 본 연구에서는 탄화규소-흑연 간의 접합특성을 평가하기 위해 3점 굽힘시험법을 응용한 복합모드꺾임시험(Mixed-Mode Flexure Test)을 통해 탄화규소-흑연을 서로 다른 접합제를 적용하여 접합한 시편의 접합 특성을 확인하고, 흑연 접착제의 미세구조를 분석하기 위해 라만분광법(Raman spectroscopy), X선 광전자분광법(X-ray Photoelectron Spectroscopy) 및 X선 전산화 단층촬영법(X-ray Computed Tomography)을 활용하였다. 이러한 일련의 과정을 통하여 선별한 접착성이 우수한 접착제를 적용하여 직경 50 mm급의 탄화규소 종자결정모듈을 제작하고, 이를 적용하여 고온의 상부종자용액성장 공정을 이용하여 공정 중 종자정의 탈락없이 성공적으로 직경 50 mm급의 탄화규소 단결정을 성장시켰다.

Large thermal stress due to the difference between silicon carbide and graphite's coefficients of thermal expansion could be formed during crystal growing process of silicon carbide (SiC) at high temperature. The large thermal stress could separate the SiC seed crystals from graphite components, which bring about the drop of the seed crystal during crystal growth. However, the bonding properties of SiC seed crystal module has hardly reported so far. In this study, SiC and graphite were bonded using 3 types of bonding agents and a three-point bending tests using a mixed-mode flexure test were conducted for the bonded samples to evaluate the bonding characteristics between SiC and graphite. Raman spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Computed Tomography were used to analyze the bonding characteristics and the microstructures of the SiC-graphite interfaces bonded with the bonding agents. As results, an excellent bonding agent was chosen to fabricate SiC seed crystal module with 50 mm in diameter. An SiC single crystal with 50 mm in diameter was successfully grown without falling out during top seeded solution growth of SiC at high temperature.

키워드

참고문헌

  1. R. Fornari, "Single crystals of electronic materials growth and properties" (Woodhead Publishing, 2019) p. 135.
  2. T. Kimoto, "Bulk and epitaxial growth of silicon carbide", Prog. Cryst. Growth Charact. Mater. 62 (2016) 329. https://doi.org/10.1016/j.pcrysgrow.2016.04.018
  3. Y. Wang, Z. Chen and S. Yu, "Ablation behavior and mechanism analysis of C/SiC composites", J. Mater. Res. Technol. 5 (2016) 170. https://doi.org/10.1016/j.jmrt.2015.10.004
  4. E. Preiss, "Fracture toughness of freestanding metallic thin films studied by bulge testing" (FAU University Press, 2018) p. 11.
  5. A. Ali, "Failure analysis and prevention" (IntechOpen, London, 2017) p. 33.
  6. T.W. Clyne, "Residual stresses in surface coatings and their effects on interfacial debonding", Key Eng. Mater. 117 (1996) 307.
  7. T.W. Clyne and S.C. Gill, "Residual stresses in thermal spray coatings and their effect on interfacial adhesion: A review of recent work", J. Therm. Spray Technol. 5 (1996) 401. https://doi.org/10.1007/BF02645271
  8. A. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon", Phys. Rev. B - Condens. Matter Mater. Phys. 61 (2000) 14095. https://doi.org/10.1103/PhysRevB.61.14095
  9. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, "Raman spectroscopy on amorphous carbon films", J. Appl. Phys. 80 (1996) 440. https://doi.org/10.1063/1.362745
  10. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett. 97 (2006) 187401. https://doi.org/10.1103/physrevlett.97.187401
  11. P. Merel, M. Tabbal, M. Chaker, S. Moisa and J. Margot, "Direct evaluation of the sp 3 content in diamond-like-carbon films by XPS", Appl. Surf. Sci. 136 (1998) 105. https://doi.org/10.1016/S0169-4332(98)00319-5
  12. R.C. Haddon, "Carbon nanotubes", Acc. Chem. Res. 35 (2002) 997. https://doi.org/10.1021/ar020259h
  13. S. Nickerson, Y. Shu, D. Zhong, C. Konke and A. Tandia, "Permeability of porous ceramics by X-ray CT image analysis", Acta Mater. 172 (2019) 121. https://doi.org/10.1016/j.actamat.2019.04.053
  14. J.E. Jakes, C.R. Frihart, C.G. Hunt, D.J. Yelle, N.Z. Plaza, L. Lorenz, W. Grigsby, D.J. Ching, F. Kamke, S.C. Gleber, S. Vogt and X. Xiao, "X-ray methods to observe and quantify adhesive penetration into wood", J. Mater. Sci. 54 (2019) 705. https://doi.org/10.1007/s10853-018-2783-5