DOI QR코드

DOI QR Code

Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling

  • 투고 : 2021.07.05
  • 심사 : 2022.05.24
  • 발행 : 2022.10.25

초록

During the manufacture of FGM plates, defects such as porosities can appear. Those can change the entire behavior of these plates. This paper aims to investigate the free vibration characteristics of porous functionally graded (FG) plates resting on elastic foundations. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power-law formulation, and the Poisson ratio is held constant. Different types of porosity distribution rates are considered. To examine the accuracy of the present formulation, several comparison studies are investigated. Effects of variation of porosity distribution rate, foundation parameter, power-law index and thickness ratio on the fundamental frequency of plates have been investigated.

키워드

과제정보

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

참고문헌

  1. Abbes, B., Benhenni, M.A., Daouadji, T.H., Abbes, F., Adim, B. and Li, Y. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  2. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  3. Adim Belkacem et al. (2016b), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223.
  4. Adim, B., Daouadji, T.H. and Abbes, B. (2016a), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 126-141. https://doi.org/10.1007/s10778-016-0787-x.
  5. Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Indus., 17, 512. https://doi.org/10.1051/meca/2015112.
  6. Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016a), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  7. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Couple. Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  8. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
  9. Bakhtiari-Nejad, F., Shamshirsaz, M., Mohammadzadeh, M. and Samie, S. (2014). "Free vibration analysis of FG skew plates based on second order shear deformation theory", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 46414, V008T11A024, August. https://doi.org/10.1115/DETC2014-34085.
  10. Batra, R.C. and Vel, S.S. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. http://doi.org/10.1016/S0022-460X(03)00412-7.
  11. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  12. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  13. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  14. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016a), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  15. Benferhat, R., Hassaine Daouadji, T., Said Mansour, M. and Hadji, L. (2016b), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  16. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.119.
  17. Benyoucef, S., Mouaici, F., Ait Atmane, H. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454. http://doi.org/10.12989/was.2016.22.4.429.
  18. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  19. Chaabane, L.A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  20. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., ... & Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  21. Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Couple. Syst. Mech., 5(3), 269-285. http://doi.org/10.12989/csm.2017.5.3.269.
  22. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  23. Feng, H., Shen, D. and Tahouneh, V. (2020), "Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers", Steel Compos. Struct., 37(6) 711-731. https://doi.org/10.12989/scs.2020.37.6.711.
  24. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4) 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
  25. Foroutan, K. and Ahmadi, H. (2020), "Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations", Steel Compos. Struct., 37(1), 51-73. https://doi.org/10.12989/scs.2020.37.1.051.
  26. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061.
  27. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
  28. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "Study on the free vibration of thick functionally graded plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
  29. Hosseini-Hashemi, S., Fadaee, M.O.H.A.M.M.A.D. and Atashipour, S.R. (2011b), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
  30. Huang, C.S., Yang, P.J. and Chang, M.J. (2012), "Three-dimensional vibration analyses of functionally graded material rectangular plates with through internal cracks", Compos. Struct., 94, 2764-2776. https://doi.org/10.1016/j.compstruct.2012.04.003
  31. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. https://doi.org/10.12989/scs.2020.35.1.111.
  32. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  33. Keleshteri Mohammadzadeh, M., Samie-Anarestani, S. and Assadi, A. (2017a), "Large deformation analysis of single-crystalline nanoplates with cubic anisotropy", Acta Mechanica, 228, 3345-3368. https://doi.org/10.1007/s00707-017-1862-z.
  34. Keleshteri, M.M. and Jelovica, J. (2020), "Nonlinear vibration behavior of functionally graded porous cylindrical panels", Compos. Struct., 239, 112028. https://doi.org/10.1016/j.compstruct.2020.112028.
  35. Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01553-x.
  36. Keleshteri, M.M. and Jelovica, J. (2022), "Beam theory reformulation to implement various boundary conditions for generalized differential quadrature method", Eng. Struct., 252, 113666. https://doi.org/10.1016/j.engstruct.2021.113666.
  37. Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin Wall. Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020.
  38. Keleshteri, M.M., Asadi, H. and Wang, Q. (2018), "On the snap-through instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers", Comput. Meth. Appl. Mech. Eng., 331(1), 53-71. https://doi.org/10.1016/j.cma.2017.11.015.
  39. Kerr A.D. (1964), "Elastic and viscoelastic foundation models", ASME J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.
  40. Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech. A/Solid., 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004.
  41. Lata, P. and Kaur, H. (2021), "Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory", Compos. Mater. Eng., 3(2), 89-106. https://doi.org/10.12989/cme.2021.3.2.089.
  42. Li, L. and Zhang, D.G (2016), "Free vibration analysis of rotating functionally graded rectangular plates", Compos. Struct., 136, 493-504. https://doi.org/10.1016/j.compstruct.2015.10.013.
  43. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. http://doi.org/10.1016/j.compstruct.2007.01.030.
  44. Mohammad Talha, B.N. (2010), "Singh, Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34, 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
  45. Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017b), "Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171(1), 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048.
  46. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E.A. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. http://doi.org/10.12989/sem.2019.69.5.511.
  47. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
  48. Parandvar, H. and Farid, M. (2015), "Nonlinear reduced order modeling of functionally graded plates subjected to random load in thermal environment", Compos. Struct., 126, 174-183. https://doi.org/10.1016/j.compstruct.2015.02.006.
  49. Parandvar, H. and Farid, M. (2016), "Large amplitude vibration of FGM plates in thermal environment subjected to simultaneously static pressure and harmonic force using multimodal FEM", Compos. Struct., 141(1), 163-171. https://doi.org/10.1016/j.compstruct.2016.01.044.
  50. Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., 3(1), 1-23. https://doi.org/10.12989/cme.2021.3.1.001.
  51. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solid. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
  52. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  53. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Couple. Syst Mech., 9(6), 499-519. http://dx.doi.org/10.12989/csm.2020.9.6.499.
  54. Ramu, I. and Mohanty, S.C. (2014), "Modal analysis of Functionally Graded material Plates using Finite Element Method", Procedia Mater. Sci., 6, 460-467. https://doi.org/10.1016/j.mspro.2014.07.059.
  55. Sator, L., Sladek, V., Sladek, J. and Young, D.L. (2016), "Elastodynamics of FGM plates by mesh-free method", Compos. Struct., 140, 309-322. https://doi.org/10.1016/j.compstruct.2015.12.065.
  56. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  57. Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.
  58. Ta, H.D. and Noh, H.C. (2015), "Analytical solution for the dynamic response of functionally graded plates resting on elastic foundation using a refined plate theory", Appl. Math. Model., 39, 6243-6257. https://doi.org/10.1016/j.apm.2015.01.062.
  59. Taczala, M., Buczkowski, R. and Kleiber, M. (2015), "Postbuckling analysis of functionally graded plates on an elastic foundation", Compos. Struct., 132, 842-847. https://doi.org/10.1016/j.compstruct.2015.06.055.
  60. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.
  61. Thai, C.H., Zenkour, A.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066.
  62. Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B: Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
  63. Thai, H.T. and Kim, S.E. (2013), "Closed-form solution for buckling analysis of thick functionally graded plates on elastic foundation", Int. J. Mech. Sci., 75, 34-44. http://doi.org/10.1016/j.ijmecsci.2013.06.007.
  64. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  65. Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/anr.2021.11.4.347.
  66. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  67. Tran, L.V., Ly, H.A., Lee, J., Wahab, M.A. and Nguyen-Xuan, H. (2015), "Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach", Int. J. Mech. Sci., 96-97, 65-78. https://doi.org/10.1016/j.ijmecsci.2015.03.003.
  68. Wattanasakulponga, N. and Ungbhakornb, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  69. Xiang, Y., Wang, C.M. and Kitipornchai, S. (1994), "Exact vibration solution for initially stressed Mindlin plates on Pasternak foundation", Int. J. Mech. Sci., 36, 311-316. https://doi.org/10.1016/0020-7403(94)90037-X.
  70. Zhang, D.G. and Zhou, H.M. (2015), "Mechanical and thermal post-buckling analysis of FGM plates with various supported boundaries resting on nonlinear elastic foundations", Thin Wall. Struct., 89, 142-151. https://doi.org/10.1016/j.tws.2014.12.021.
  71. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
  72. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundations", Int. J. Numer. Meth. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915.
  73. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.