# The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter

Jung-Su Kim<sup>1,\*</sup>, Youn-Hyun Park<sup>2</sup>, Hyun-Sic Chae<sup>2</sup>

<sup>1</sup>Department of Radiologic technology, Daegu Health College <sup>2</sup>Sans Frontier Technology Ltd.

Received: August 21, 2022. Revised: October 14, 2022. Accepted: October 31, 2022.

#### ABSTRACT

Electronic personal dosimeter (EPD) provide real time monitoring and a direct indication of the accumulated dose or dose rate in terms of personal dose. Most EPD do not perform well in low energy photon radiation fields present in medical radiation environments. It has poor responsibility and large error rate for low energy photon radiation of medical radiation environments. This study evaluated to optimal additional filtration for EPD using silicon PIN photodiode detector form 40 to 120 kVp range in medical radiation environments. From 40 to 80 kVp energy range, Al 0.2 mm and Sn 1.0 mm overlapped filtration showed good responsibility to dose rate and from 80 kVp to 120 kVp energy range, Al 0.2 mm and Sn 1.6 mm overlapped filtration showed good responsibility to dose rate.

Keywords: Electronic personal dosimeter, Energy responsibility, Filtration, Low energy X-ray, Silicon photodiode

#### I. INTRODUCTION

원자력 관련 산업의 발전으로 방사선과 원자력 분야의 종사자들은 개인피폭선량의 측정을 위해 법정선량계인 형광유리선량계나 필름뱃지와 같은 피동형 개인피폭선량계를 사용하고 있다. 피동형 개인피폭선량계는 방사선에 노출된 후 판독 과정 을 거쳐야 피폭선량을 알 수 있는 단점을 가지고 있다. 이러한 단점은 전자식 개인피폭선량계와 같 은 능동형 개인피폭선량계를 이용하여 보완하고 있다<sup>[1-3]</sup>. 대부분의 전자식 개인피폭선량계는 가이 거-뮬러관(Geiger-Mueller tube)을 사용하거나 Si 포 토다이오드를 사용하다. Si 포토다이오드를 사용하 는 개인피폭선량계는 소형의 Si 포토다이오드 (Silicon photodiode)와 전치증폭기, 성형증폭기, 환 산회로, 표시창으로 구성된다<sup>[3]</sup>. Si 포토다이오드를 사용한 검출기는 기체 전리형 검줄기와 유사한 동 작 특성을 가지며 W값이 작아 에너지 분해능이 우 수한 특성을 가진다<sup>[4]</sup>. Si 포토다이오드를 사용하는 선량계는 방사선 검출 효율을 증가시키기 위해 Si 포토다이오드 전면에 금속 보상필터를 부착하여 측정에너지 대역의 응답 특성을 높이는 형태로 구 성된다. 이러한 금속 보상필터의 두께나 재질은 개 인피폭선량계의 사용 영역에 따라 다르게 사용하 고 있다<sup>[5]</sup>.

현재 사용하고 있는 전자식 개인피폭선량계는 즉각적인 피폭선량과 선량률 표시가 가능하고 알 람기능을 구현하고 있어 원자력 유관 시설의 종사 자의 보조선량계로 주로 사용한다<sup>[6]</sup>. 전자식 개인 피폭선량계의 경우 반감기 30.17년의 <sup>137</sup>Cs 표준선 원의 662 keV 에너지를 이용하여 교정을 실시한다 <sup>[7]</sup>. 높은 에너지를 이용하여 교정을 시행한 능동형 전자식 개인피폭선량계가 저에너지 X선을 사용하 는 의료 환경에서는 사용되지 못하고 주로 원자력

<sup>\*</sup> Corresponding Author: Jung-Su Kim E-mail: rtkjs01@dhc.ac.kr Address: Daegu Health College, 15, Yeongsong-ro, Buk-gu, Daegu, Korea

관련 분야에서 사용된다<sup>[8]</sup>. 진단용 X선 검사에 사 용하는 X선 에너지는 환자의 두께에 따라 40 kVp 에서 140 kVp 미만 에너지대역을 사용한다<sup>[9]</sup>. 특히 150 kVp 미만의 낮은 에너지를 사용하는 영상의학 영역에서 사용하기에는 측정 오차가 크기 때문에 사용에 다소 어려움이 있다. 그러므로 본 연구에서 는 의료분야의 저에너지 X선 영역에서 방사선관계 종사자의 선량측정을 위해 사용 가능한 능동형 전 자식 개인피폭선량계의 개발을 위해 Si 포토다이오 드 앞에 부착하는 최적의 금속 에너지 보상필터를 도출하고자 하였다.

# II. MATERIAL AND METHOD

본 연구에서는 8.9 × 10.1 × 4.85 mm의 Si 포토다 이오드(Hamamatsu, Japan)를 사용하여 능동형 전자 식 개인피폭선량계를 구현하기 위한 기판을 제작 하였다. 실험에 사용한 검출기는 Si 포토다이오드 에 CsI 신틸레이터에 입힌 것으로 100 keV 이하 X 선에 이상적으로 반응하는 검출특성을 가진다<sup>[10]</sup>.

검출기를 준비된 기판에 부착하였고 빛에도 반 응하는 검출기 특성으로 인해 과동작하는 것을 방 지하기 위해 주변의 빛을 차광하였으며 LCD 표시 창을 이용하여 5V의 전원에서 작동하도록 하였다. 기판에 부착한 Si 포토다이오드를 X선 장치와 마주 보게 위치시키고 X선 장치에서 검출기까지 거리는 70 cm로 설정하였다. 일반적 X선 촬영거리 100 cm 에서 성인흉부 두께를 30 cm으로 가정하여 실험조

건을 설정하였다. Si 포토다이오드 앞면에 가로, 세 로 16 mm의 Al과 Sn 보상필터를 교대로 위치시 키고 최적의 응답특성을 나타내는 금속 보상필터 의 두께를 확인하기 위한 실험을 진행하였다. 필터 는 X선관 쪽에서부터 Sn과 Al 순으로 위치하였다. 실험을 위한 X선 관전압은 진단영역에서 주로 사 용하는 40 kVp 에서 140 kVp 사이 관전압으로 40 kVp에서부터 20 kVp 간격으로 설정하였으며 실험 장비의 과부하를 고려하여 140 kVp는 제외하였다 <sup>[11,12]</sup>. 관전류량은 10 mAs로 고정하여 각 3회 씩 X 선을 조사하고 LCD창에 표시되는 선량률을 측정 하였다. X선 조사에 사용한 장비는 진단용 X선장 치인 Accuray 603R(DK medical Ltd. Korea) 장치로 E7239X 모델(Tosihba, Japan)의 X선관을 사용하고 있다. 이 X선관의 타깃 각도는 16°이고 지름 74 mm의 레늄-텅스텐 도포 몰리브덴 재질로 구성되어 있다<sup>[13]</sup>. 각 실험에서 Si 포토다이오드 앞면에 부착 한 Al과 Sn 보상필터 혼합 두께는 Table 1와 같다. 측정 관전압의 정확성과 조사시간의 정확성을 확 인하기 위해 본 연구를 위해 제작한 Si 포토다이오 드 전자식 개인피폭선량계와 함께 Unfors 사의 Raysafe Xi 멀티미터(Unfors Raysafe, Sweden)를 비 교선량계로 동시에 측정하였다. 측정에 사용한 멀 티미터는 2021년 10월 30일 스웨덴 인증 및 적합성 평가위원회(Swedish Board for Accreditation and Conformity Assessment)에 의해 보증된 Unfors에 의 해 교정되었다. 실험을 위한 장치의 구성은 Fig. 1 과 같다.





Fig. 1. (A) Configuration of test geometry and (B) sample dosimeter with Raysafe Xi multimeter

| Filtration material | Thickness (mm)                                                         |
|---------------------|------------------------------------------------------------------------|
| Al                  | 0.2, 0.4, 0.6, 0.8, 1.0                                                |
| Al + Sn             | 0.2+0.2, 0.2+0.4, 0.2+0.6, 0.2+0.8, 0.2+1.0, 0.2+1.2, 0.2+1.4, 0.2+1.6 |

Table 1. Additional filtration thickness of Al, Sn

### **III. RESULTS**

측정한 모든 조건에서 Raysafe 멀티미터의 관전 압 측정값은 ± 10% 백분율 평균오차 범위 내에서 작동하는 것을 확인 하였다. 이는 실험에 사용한 진단용 X선 장치가 관전압 허용오차를 만족하는 장치임을 알 수 있었다<sup>[14]</sup>. Si 포토다이오드 앞면에 Al 0.2 mm 보상필터를 부착한 경우 60 kVp영역에 서 가장 높은 0.684 mSv/h의 평균 선량률을 나타냈 고, Al 0.4 mm 보상필터를 부착한 경우 80 kVp 영 역에서 가장 높은 0.583 mSv/h의 평균 선량률을 나 타냈고 Al 0.6 mm 에서는 100 kVp에서 가장 높은 평균 선량률 0.623 mSv/h, 0.8 mm에서는 80 kVp에 서 가장 높은 평균 선량률 0.618 mSv/h, 1.0 mm 보 상필터를 부착한 경우 40 kVp에서 가장 높은 평균 선량률 18.532 mSv/h를 나타냈다. Al 보상필터 두 께에 따른 선량률의 측정값은 Table 2와 같다. 각 Al 보상필터에 대한 평균 선량률 그래프는 Fig. 2와 같다.

Al과 Sn 보상필터의 두께를 증가시키는 경우 0.2 + 0.4 mm에서는 60 kVp까지 선량률이 증가하다가 이후 감소하는 경향을 보이고 Al + Sn 0.2 + 0.6 mm에서는 80 kVp까지 선량률이 증가하다가 이후 감소하는 경향을 보였다. Al + Sn 0.2 + 1.4 mm 까 지 증가시킨 경우 100 kVp까지 선량률이 증가하다 가 다시 감소하는 경향을 보였다. Al + Sn 0.2 + 1.6 mm를 사용한 경우 40 kVp에서 80 kVp까지는 응답 률이 소폭 증가하다가 80 kVp 부터 120 kVp까지는 큰 수치로 증가하였다. Al과 Sn 보상필터를 동시에 사용한 실험에서 각 보상필터 조건에 대한 측정 결 과는 Table 3와 같다. 각 Al + Sn 보상필터에 대한 평균 선량률 그래프는 Fig. 3과 같다.

Al과 Sn 보상필터의 조합을 이용하여 에너지 특 성에 따른 응답특성을 확인한 결과 Al 보상필터 만 을 사용한 경우 모든 두께에서 40 kVp에서 60 kVp 까지는 응답이 증가하는 경향을 보이지만 60 kVp 이후부터는 응답이 감소하거나 응답이 둔해지는 경향을 보였다.

### **IV. DISCUSSION**

Si 포토다이오드를 사용한 능동형 전자식 개인피 폭선량계 개발과정에서 저에너지 X선에 대한 응답 특성 최적화를 위해 실험에서 Al 보상필터 만을 사 용한 경우 모든 두께에 대해 40 kVp에서 80 kVp까 지는 응답이 증가하는 경향을 보이지만 80 kVp 이 후부터는 응답이 감소하거나 응답이 둔해지는 경 향을 보였다. 따라서 80 kVp 이상에서는 Al 필터만 을 사용해서는 적절한 선량의 측정이 어려운 것으 로 생각된다. Al과 Sn 혼합 보상필터를 사용한 경 우 Al 0.2 mm + Sn 0.2 mm를 사용한 경우 40 kVp 에서는 높은 선량률이 측정되었으나 이후 관전압 이 상승 할수록 선량률이 측정되지 않는 것으로 보 아 광자가 검출기를 모두 통과하는 것으로 생각된 다. Al 0.2 mm에 Sn을 0.8 mm에서부터 0.2 mm 간 격으로 증가시켜 1.2 mm까지 증가시킨 경우 100 kVp까지는 증가하던 선량율이 100 kVp 이후 급격 히 감소하는 경향을 나타낸 것은 100 kVp에서 120 kVp까지 광자가 Si 포토다이오드를 모두 투과하는 것으로 생각된다. 따라서 40 kVp부터 120 kVp까지 X선의 선량 측정을 위해서는 관전압 영역을 80 kVp 이하 영역과 80 kvp 이상 120 kVp까지 영역으 로 나누어 보상필터의 두께를 다르게 적용하는 것 이 전자식개인피폭 선량계의 정확성을 높일 수 있 을 것으로 생각된다. 이 등의 연구에서 감마선 영 역에서 제작된 개인피폭선량계의 0.662 MeV 감마 선에 대해 1.0 mm Cu와 Al을 사용하는 것이 가장 좋은 응답특성을 가진다는 연구와 비교하여 본 연 구에서는 저에너지 X선에 대해 80 kVp 이하 영역 과 이상 영역에서 각기 다른 필터의 두께를 사용하 여 응답특성을 향상시킬 수 있음을 확인하였다<sup>[3]</sup>.

The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter

M. Jung 등의 연구에서 감마선 검출을 위한 Si 포 토다이오드 검출에서는 전자생성수율을 고려하여 1.5 mm 두께의 Al 필터 사용하였다<sup>[15]</sup>. 40 kVp에서 150 kVp 영역 X선 선량 측정을 위한 본 연구의 Si 포토다이오드에서는 80 kVp 이하 영역에서는 0.4 mm Al 필터를 사용한 경우에서 R<sup>2</sup> 값이 0.9943으 로 가장 우수했고, 80 kVp 이상 영역에서는 0.2 mm Al과 1.6 mm Sn 필터를 사용 영역에서 R<sup>2</sup> 값 이 0.9898로 응답특성이 가장 우수한 것으로 판단



된다. 상용으로 사용되는 전자식 개인선량계에서 137Cs를 이용하여 교정한 경우 16 keV에서 1.5 MeV 에너지 영역에서 ±15%에서 ±30%에 이르는 오차를 허용하고 있다<sup>[16]</sup>. 따라서 본 연구의 결과와 함께 추가적인 실험을 통해 각 에너지 영역에 보정 계수를 도출하여 저에너지 X선을 사용하는 진단방 사선 영역에서 사용가능한 전자식 개인피폭선량계 의 개발을 진행할 예정이다.



Fig. 2. Dose rate for each Al(mm) filter thickness.

Fig. 3. Dose rate for each Al(mm) and Sn(mm) filter thickness.

| Table | 2. | Measurement | value | of | each | tube | voltage | for | Al | filtrations |   |
|-------|----|-------------|-------|----|------|------|---------|-----|----|-------------|---|
|       |    |             |       |    |      |      |         |     |    |             | _ |

| Al thickness<br>(mm) | Tube voltage<br>(kVp) | Exposure<br>(mAs) | Meas   | surement value(m | Average<br>(mSv/h) | SD     |       |
|----------------------|-----------------------|-------------------|--------|------------------|--------------------|--------|-------|
|                      | 40                    | 10                | 0.011  | 0                | 0                  | 0.004  | 0.006 |
|                      | 60                    | 10                | 0.604  | 0.914            | 0.533              | 0.684  | 0.203 |
| 0.2                  | 80                    | 10                | 0.674  | 0.483            | 0.46               | 0.539  | 0.117 |
|                      | 100                   | 10                | 0.706  | 0.607            | 0.754              | 0.689  | 0.075 |
|                      | 120                   | 10                | 0.607  | 0.762            | 0.514              | 0.628  | 0.125 |
|                      | 40                    | 10                | 0.026  | 0.001            | 0.019              | 0.015  | 0.013 |
|                      | 60                    | 10                | 0.023  | 0.507            | 0.479              | 0.336  | 0.272 |
| 0.4                  | 80                    | 10                | 0.413  | 0.678            | 0.657              | 0.583  | 0.147 |
|                      | 100                   | 10                | 0.752  | 0.442            | 0.547              | 0.580  | 0.158 |
|                      | 120                   | 10                | 0.582  | 0.591            | 0.508              | 0.560  | 0.046 |
|                      | 40                    | 10                | 0.001  | 0.001            | 0.018              | 0.007  | 0.010 |
|                      | 60                    | 10                | 0.599  | 0.574            | 0.632              | 0.602  | 0.029 |
| 0.6                  | 80                    | 10                | 0.524  | 0.466            | 0.702              | 0.564  | 0.123 |
|                      | 100                   | 10                | 0.766  | 0.616            | 0.488              | 0.623  | 0.139 |
|                      | 120                   | 10                | 0.591  | 0.673            | 0.566              | 0.610  | 0.056 |
|                      | 40                    | 10                | 0.412  | 0.009            | 0.008              | 0.143  | 0.233 |
|                      | 60                    | 10                | 0.549  | 0.381            | 0.566              | 0.499  | 0.102 |
| 0.8                  | 80                    | 10                | 0.642  | 0.599            | 0.672              | 0.638  | 0.037 |
|                      | 100                   | 10                | 0.632  | 0.73             | 0.491              | 0.618  | 0.120 |
|                      | 120                   | 10                | 0.64   | 0.491            | 0.474              | 0.535  | 0.091 |
|                      | 40                    | 10                | 18.416 | 18.472           | 18.707             | 18.532 | 0.154 |
|                      | 60                    | 10                | 5.605  | 5.947            | 5.728              | 5.760  | 0.173 |
| 1.0                  | 80                    | 10                | 0.015  | 0.372            | 0.122              | 0.170  | 0.183 |
|                      | 100                   | 10                | 0.491  | 0.335            | 0.566              | 0.464  | 0.118 |
|                      | 120                   | 10                | 0.558  | 0.355            | 0.457              | 0.457  | 0.102 |

522

| 40 10 18.416 18.472 18.707 18.532 0.113   60 10 5.615 5.947 5.728 5.760 0.173   0.2+0.2 80 10 0.015 0.372 0.122 0.170 0.1183   100 10 0.491 0.335 0.566 0.464 0.118   120 10 0.588 0.355 0.457 0.457 0.102   40 10 5.847 12.197 12.42 10.155 3.732   60 10 8.116 19.125 19.141 15.527 6.2455   0.2+0.4 80 10 14.202 12.418 13.676 13.432 0.917   100 10 0.204 0.33 0.512 0.379 0.117   120 10 0.406 0.482 0.888 0.592 0.259   0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Al+Sn thickness<br>(mm) | Tube voltage<br>(kVp) | Exposure<br>(mAs) | Measu  | rement value (1 | mSv/h) | Average<br>(mSv/h) | SD    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------|--------|-----------------|--------|--------------------|-------|
| 60 10 5.605 5.947 5.728 5.760 0.173   0.2+0.2 80 10 0.015 0.372 0.122 0.170 0.183   120 10 0.401 0.335 0.566 0.444 0.102   120 10 0.558 0.355 0.457 0.457 0.102   40 10 5.847 12.197 12.42 10.155 3.732   60 10 8.316 19.125 19.141 15.527 6.245   100 10 0.294 0.33 0.512 0.379 0.117   120 10 0.406 0.482 0.888 0.592 0.259   0.2+0.6 80 10 18.676 18.446 28.478 19.017 4.31   0.2+0.6 80 10 8.927 7.616 11.493 9.345 1.972   0.2+0.6 80 10 5.381 1.341 0.922 8.528 0.438   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 40                    | 10                | 18.416 | 18.472          | 18.707 | 18.532             | 0.154 |
| 0.2+0.2 80 10 0.015 0.372 0.122 0.170 0.183   100 10 0.451 0.335 0.666 0.4461 0.181   120 10 0.558 0.355 0.457 0.457 0.102   60 10 8.316 19.125 19.141 15.527 6.245   60 10 0.294 0.33 0.512 0.379 0.117   120 10 0.406 0.482 0.333 0.512 0.379 0.117   120 10 0.406 0.482 0.888 0.592 0.259   0.2+0.6 60 10 16.58 24.638 16.034 19.017 4.871   0.2+0.6 60 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.433 0.171   120 10 7.625 10.607 7.115 8.449 1.845   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 60                    | 10                | 5.605  | 5.947           | 5.728  | 5.760              | 0.173 |
| 100 10 0.491 0.335 0.566 0.464 0.118   120 10 0.588 0.355 0.457 0.457 0.102   40 10 5.847 12.197 12.42 10.153 3.732   0240.4 80 10 14.202 12.418 13.676 13.432 0.917   100 10 0.294 0.33 0.512 0.379 0.117   120 10 0.4066 0.482 0.88 0.592 0.259   60 10 4108 4.311 4.084 4.241 0.251   0.240.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.419   0.240.8 3.814 8.502 5.841 2.407 0.509   120 10 7.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.2 \pm 0.2$           | 80                    | 10                | 0.015  | 0.372           | 0.122  | 0.170              | 0.183 |
| 120 10 0.558 0.355 0.457 0.457 0.102   40 10 5.847 12.197 12.42 10.155 3.732   60 10 8.316 19.125 19.141 15.527 6.2450   60 10 0.294 0.33 0.512 0.379 0.117   100 10 0.294 0.33 0.512 0.379 0.259   120 10 0.406 0.482 0.888 0.592 0.259   0.2406 80 10 15.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 1.14 8.502 5.841 2.407   0.210.8 3.141 8.502 5.843 4.049 0.053 0.066   0.210.9 10 7.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 100                   | 10                | 0.491  | 0.335           | 0.566  | 0.464              | 0.118 |
| 40 10 5.847 12.197 12.42 10.155 3.732   60 10 8.316 19.125 19.141 15.527 6.245   0.210.4 80 10 14.202 12.418 13.676 13.432 0.917   120 10 0.406 0.482 0.888 0.592 0.259   40 10 4.108 4.531 4.084 4.241 0.251   60 10 16.38 24.638 16.034 19.017 4.871   60 10 8.927 7.616 11.493 9.345 1.572   120 10 0.621 0.602 0.423 0.429 0.171   60 10 5.208 3.814 8.502 5.841 2.407   0.2+0.8 80 10 1.7221 18.185 17.779 0.506   0.2+0.8 80 10 7.572 16.607 7.115 8.449 1.886   0.2+1.0 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 120                   | 10                | 0.558  | 0.355           | 0.457  | 0.457              | 0.102 |
| 60 10 8.316 19.125 19.141 15.527 6.245   0.2+0.4 80 10 14.202 12.418 13.676 13.432 0.917   100 10 0.294 0.33 0.512 0.379 0.117   120 10 0.406 0.482 0.888 0.592 0.259   60 10 16.38 24.638 16.034 19.017 4.871   60 10 16.38 24.638 16.034 19.017 4.871   60 10 16.38 24.638 16.034 19.017 4.871   102 10 0.261 0.602 0.423 0.429 0.171   120 10 0.834 1.14 0.922 8.58 0.438   0.2+0.8 80 10 8.187 8.374 9.022 8.528 0.438   102 10 7.952 10.607 7.115 8.449 1.886   100 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 40                    | 10                | 5.847  | 12.197          | 12.42  | 10.155             | 3.732 |
| 0.2+0.4 80 10 14.202 12.418 13.676 13.432 0.917   100 10 0.294 0.33 0.512 0.379 0.117   120 10 0.406 0.482 0.888 0.592 0.259   40 10 4.108 4.531 4.084 4.241 0.251   60 10 16.38 24.638 16.034 19.017 4.871   0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 8.102 5.841 2.407   0.2+0.8 80 10 8.374 9.022 8.528 0.438   100 10 7.625 10.607 7.115 8.449 1.886   0.2+1.0 80 10 <t< td=""><td></td><td>60</td><td>10</td><td>8.316</td><td>19.125</td><td>19.141</td><td>15.527</td><td>6.245</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 60                    | 10                | 8.316  | 19.125          | 19.141 | 15.527             | 6.245 |
| 100 10 0.294 0.33 0.512 0.379 0.117   120 10 0.406 0.482 0.888 0.592 0.259   40 10 4.108 4.531 4.084 4.241 0.251   60 10 16.38 24.638 16.034 19.017 4.871   0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 1.14 0.922 0.965 0.158   60 10 5.208 3.814 8.502 5.841 2.407   0.2+0.8 80 10 17.925 10.607 7.115 8.449 1.886   100 10 19.031 19.264 29.642 22.636 6.068   120 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.2 \pm 0.4$           | 80                    | 10                | 14.202 | 12.418          | 13.676 | 13.432             | 0.917 |
| 120 10 0.406 0.482 0.888 0.592 0.259   40 10 4.108 4.531 4.084 4.241 0.251   60 10 16.38 24.638 16.034 19.017 4.871   0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 1.14 0.922 8.528 0.438   60 10 5.208 3.814 8.502 5.841 2.407   0.2+0.8 80 10 17.932 17.221 18.185 17.79 0.500   120 10 7.625 10.607 7.115 8.449 1.886   0.2+1.0 80 10 17.507 26.608 17.446 20.520 5.272   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 100                   | 10                | 0.294  | 0.33            | 0.512  | 0.379              | 0.117 |
| 40 10 4.108 4.531 4.084 4.241 0.251   60 10 16.38 24.638 16.034 19.017 4.871   0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.814 1.14 0.922 0.965 0.158   60 10 5.208 3.814 8.502 5.841 2.407   0.2+0.8 80 10 8.187 8.374 9.022 8.528 0.438   100 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   0.2+1.0 80 10 17.907 26.608 17.446 0.5205 5.272   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 120                   | 10                | 0.406  | 0.482           | 0.888  | 0.592              | 0.259 |
| 60 10 16.38 24.638 16.034 19.017 4.871   0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 1.14 0.922 8.0429 0.178   60 10 5.288 3.814 8.502 5.841 2.407   60 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   60 10 2.423 5.182 5.538 4.381 1.705   62+1.0 80 10 17.507 26.608 17.446 20.505 5.272   100 10 19.03 19.264 22.636 6.068   2120 10 7.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 40                    | 10                | 4.108  | 4.531           | 4.084  | 4.241              | 0.251 |
| 0.2+0.6 80 10 18.676 18.446 28.478 21.867 5.727   100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 1.14 0.922 0.965 0.158   60 10 5.208 3.814 8.502 5.841 2.407   80 10 8.187 8.374 9.022 8.528 0.438   100 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   0.2+1.0 80 10 17.507 26.608 17.446 20.520 5.272   100 10 19.003 19.264 29.642 22.636 6.068   120 10 7.903 15.315 14.975 12.731 4.185   0.2+1.2 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 60                    | 10                | 16.38  | 24.638          | 16.034 | 19.017             | 4.871 |
| 100 10 8.927 7.616 11.493 9.345 1.972   120 10 0.261 0.602 0.423 0.429 0.171   120 10 0.834 1.14 0.922 0.965 0.158   60 10 5.208 3.814 8.502 5.841 2.407   0.2+0.8 80 10 8.187 8.374 9.022 8.528 0.438   100 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   40 10 0.016 0.021 0.123 0.053 0.060   60 10 2.423 5.182 5.538 4.381 1.705   0.2+1.0 80 10 17.507 26.608 17.446 20.520 5.272   100 10 19.033 19.264 22.636 6.068   120 10 7.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 + 0.6               | 80                    | 10                | 18.676 | 18.446          | 28.478 | 21.867             | 5.727 |
| 120 10 0.261 0.602 0.423 0.429 0.171   40 10 0.834 1.14 0.922 0.965 0.158   60 10 5.208 3.814 8.502 5.841 2.407   80 10 8.187 8.374 9.022 8.528 0.438   100 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   60 10 2.423 5.182 5.538 4.381 1.705   61 10 2.423 5.182 5.538 4.381 1.705   80 10 17.507 2.6608 17.446 20.520 5.272   100 10 19.033 19.264 29.642 22.636 6.0608   120 10 7.903 15.315 14.975 12.731 4.185   0.2+1.2 80 10 1.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 100                   | 10                | 8.927  | 7.616           | 11.493 | 9.345              | 1.972 |
| 40 10 0.834 1.14 0.922 0.965 0.158   60 10 5.208 3.814 8.502 5.841 2.407   80 10 8.187 8.374 9.022 8.528 0.438   100 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   40 10 0.016 0.021 0.123 0.053 0.060   60 10 2.423 5.182 5.538 4.381 1.705   0.2+1.0 80 10 17.507 26.608 17.446 20.520 5.272   100 10 19.003 19.264 29.642 22.636 6.068   120 10 7.903 15.315 14.975 12.731 4.185   0.2+1.2 80 10 9.371 8.28 16.041 11.231 4.201   0.2+1.2 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 120                   | 10                | 0.261  | 0.602           | 0.423  | 0.429              | 0.171 |
| 60 10 5.208 3.814 8.502 5.841 2.407   80 10 8.187 8.374 9.022 8.528 0.438   100 10 17.932 17.221 18.185 17.779 0.500   120 10 7.625 10.607 7.115 8.449 1.886   40 10 0.016 0.021 0.123 0.053 0.060   60 10 2.423 5.182 5.538 4.381 1.705   80 10 17.507 26.608 17.446 20.520 5.272   100 10 19.003 19.264 29.642 22.636 6.668   120 10 7.903 15.315 14.975 12.731 4.185   0.2+1.2 80 10 9.371 8.28 16.041 11.231 4.201   100 10 19.918 19.668 19.918 19.835 0.144   120 10 9.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 40                    | 10                | 0.834  | 1.14            | 0.922  | 0.965              | 0.158 |
| $0.2+0.8 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 60                    | 10                | 5.208  | 3.814           | 8.502  | 5.841              | 2.407 |
| $0.2+1.0 = \begin{bmatrix} 100 & 10 & 17.932 & 17.221 & 18.185 & 17.779 & 0.500 \\ \hline 120 & 10 & 7.625 & 10.607 & 7.115 & 8.449 & 1.886 \\ \hline 40 & 10 & 0.016 & 0.021 & 0.123 & 0.053 & 0.060 \\ \hline 60 & 10 & 2.423 & 5.182 & 5.538 & 4.381 & 1.705 \\ \hline 80 & 10 & 17.507 & 26.608 & 17.446 & 20.520 & 5.272 \\ \hline 100 & 10 & 19.003 & 19.264 & 29.642 & 22.636 & 6.068 \\ \hline 120 & 10 & 7.903 & 15.315 & 14.975 & 12.731 & 4.185 \\ \hline 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 60 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 0.003 & 0.003 & 0.005 & 0.004 & 0.001 \\ \hline 60 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $ | $0.2 \pm 0.8$           | 80                    | 10                | 8.187  | 8.374           | 9.022  | 8.528              | 0.438 |
| $0.2+1.0 = \begin{bmatrix} 120 & 10 & 7.625 & 10.607 & 7.115 & 8.449 & 1.886 \\ \hline 40 & 10 & 0.016 & 0.021 & 0.123 & 0.053 & 0.060 \\ \hline 60 & 10 & 2.423 & 5.182 & 5.538 & 4.381 & 1.705 \\ \hline 80 & 10 & 17.507 & 26.608 & 17.446 & 20.520 & 5.272 \\ \hline 100 & 10 & 19.003 & 19.264 & 29.642 & 22.636 & 6.068 \\ \hline 120 & 10 & 7.903 & 15.315 & 14.975 & 12.731 & 4.185 \\ \hline 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 60 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ \hline 100 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 100 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 60 & 10 & 1.677 & 1.493 & 3.304 & 2.158 & 0.997 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $                                                                   |                         | 100                   | 10                | 17.932 | 17.221          | 18.185 | 17.779             | 0.500 |
| $0.2+1.0 = \begin{bmatrix} 40 & 10 & 0.016 & 0.021 & 0.123 & 0.053 & 0.060 \\ \hline 60 & 10 & 2.423 & 5.182 & 5.538 & 4.381 & 1.705 \\ \hline 80 & 10 & 17.507 & 26.608 & 17.446 & 20.520 & 5.272 \\ \hline 100 & 10 & 19.003 & 19.264 & 29.642 & 22.636 & 6.068 \\ \hline 120 & 10 & 7.903 & 15.315 & 14.975 & 12.731 & 4.185 \\ \hline 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 60 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ \hline 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 0.2+1.6 & \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 60 & 10 & 1.677 & 1.493 & 3.304 & 2.158 & 0.997 \\ \hline 0.2+1.6 & \hline 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $                                                                                                   |                         | 120                   | 10                | 7.625  | 10.607          | 7.115  | 8.449              | 1.886 |
| $0.2+1.0 = \begin{bmatrix} 60 & 10 & 2.423 & 5.182 & 5.538 & 4.381 & 1.705 \\ 80 & 10 & 17.507 & 26.608 & 17.446 & 20.520 & 5.272 \\ 100 & 10 & 19.003 & 19.264 & 29.642 & 22.636 & 6.068 \\ 120 & 10 & 7.903 & 15.315 & 14.975 & 12.731 & 4.185 \\ \hline 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 0.2+1.2 & 80 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 0.2+1.4 & 80 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $                                                                                                                                                                                                                                                            |                         | 40                    | 10                | 0.016  | 0.021           | 0.123  | 0.053              | 0.060 |
| 0.2+1.0 80 10 17.507 26.608 17.446 20.520 5.272   100 10 19.003 19.264 29.642 22.636 6.068   120 10 7.903 15.315 14.975 12.731 4.185   40 10 0.02 0.08 0.133 0.078 0.057   60 10 1.407 1.196 1.744 1.449 0.276   0.2+1.2 80 10 9.371 8.28 16.041 11.231 4.201   100 10 19.918 19.668 19.918 19.835 0.144   120 10 9.969 17.091 10.814 12.625 3.891   0.2+1.4 80 10 12.772 6.699 13.246 10.906 3.651   100 10 19.866 30.457 19.822 23.382 6.127   120 10 18.063 9.341 17.976 15.127 5.011   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 60                    | 10                | 2.423  | 5.182           | 5.538  | 4.381              | 1.705 |
| $0.2+1.4 \begin{bmatrix} 100 & 10 & 19.003 & 19.264 & 29.642 & 22.636 & 6.068 \\ 120 & 10 & 7.903 & 15.315 & 14.975 & 12.731 & 4.185 \\ \hline 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 60 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ \hline 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 40 & 10 & 0.003 & 0.003 & 0.005 & 0.004 & 0.001 \\ \hline 60 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 60 & 10 & 1.677 & 1.493 & 3.304 & 2.158 & 0.997 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $                                                                                                                                                                                                                                                                 | 0.2 + 1.0               | 80                    | 10                | 17.507 | 26.608          | 17.446 | 20.520             | 5.272 |
| $0.2+1.4 = \begin{bmatrix} 120 & 10 & 7.903 & 15.315 & 14.975 & 12.731 & 4.185 \\ 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 80 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ \hline 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 40 & 10 & 0.003 & 0.003 & 0.005 & 0.004 & 0.001 \\ \hline 60 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 60 & 10 & 1.677 & 1.493 & 3.304 & 2.158 & 0.997 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline$                                                                                                                                                                                                                                                                                                                               |                         | 100                   | 10                | 19.003 | 19.264          | 29.642 | 22.636             | 6.068 |
| $0.2+1.2 = \begin{bmatrix} 40 & 10 & 0.02 & 0.08 & 0.133 & 0.078 & 0.057 \\ \hline 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 80 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ \hline 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 40 & 10 & 0.003 & 0.003 & 0.005 & 0.004 & 0.001 \\ \hline 60 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 60 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 60 & 10 & 1.677 & 1.493 & 3.304 & 2.158 & 0.997 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                               |                         | 120                   | 10                | 7.903  | 15.315          | 14.975 | 12.731             | 4.185 |
| $0.2+1.2 = \begin{bmatrix} 60 & 10 & 1.407 & 1.196 & 1.744 & 1.449 & 0.276 \\ \hline 80 & 10 & 9.371 & 8.28 & 16.041 & 11.231 & 4.201 \\ \hline 100 & 10 & 19.918 & 19.668 & 19.918 & 19.835 & 0.144 \\ \hline 120 & 10 & 9.969 & 17.091 & 10.814 & 12.625 & 3.891 \\ \hline 40 & 10 & 0.003 & 0.003 & 0.005 & 0.004 & 0.001 \\ \hline 60 & 10 & 2.618 & 1.193 & 3.991 & 2.601 & 1.399 \\ \hline 0.2+1.4 & 80 & 10 & 12.772 & 6.699 & 13.246 & 10.906 & 3.651 \\ \hline 100 & 10 & 19.866 & 30.457 & 19.822 & 23.382 & 6.127 \\ \hline 120 & 10 & 18.063 & 9.341 & 17.976 & 15.127 & 5.011 \\ \hline 40 & 10 & 0.011 & 0.004 & 0.01 & 0.008 & 0.004 \\ \hline 60 & 10 & 1.677 & 1.493 & 3.304 & 2.158 & 0.997 \\ \hline 0.2+1.6 & 80 & 10 & 3.216 & 3.317 & 3.718 & 3.417 & 0.266 \\ \hline 100 & 10 & 12.474 & 19.273 & 12.566 & 14.771 & 3.899 \\ \hline 120 & 10 & 28.309 & 18.449 & 18.333 & 21.697 & 5.726 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 40                    | 10                | 0.02   | 0.08            | 0.133  | 0.078              | 0.057 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 60                    | 10                | 1.407  | 1.196           | 1.744  | 1.449              | 0.276 |
| 100 10 19.918 19.668 19.918 19.835 0.144   120 10 9.969 17.091 10.814 12.625 3.891   40 10 0.003 0.003 0.005 0.004 0.001   60 10 2.618 1.193 3.991 2.601 1.399   0.2+1.4 80 10 12.772 6.699 13.246 10.906 3.651   100 10 19.866 30.457 19.822 23.382 6.127   120 10 18.063 9.341 17.976 15.127 5.011   40 10 0.011 0.004 0.01 0.008 0.004   60 10 1.677 1.493 3.304 2.158 0.997   0.2+1.6 80 10 3.216 3.317 3.718 3.417 0.266   100 10 12.474 19.273 12.566 14.771 3.899   120 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2+1.2                 | 80                    | 10                | 9.371  | 8.28            | 16.041 | 11.231             | 4.201 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 100                   | 10                | 19.918 | 19.668          | 19.918 | 19.835             | 0.144 |
| $0.2+1.4 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 120                   | 10                | 9.969  | 17.091          | 10.814 | 12.625             | 3.891 |
| $0.2+1.4 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 40                    | 10                | 0.003  | 0.003           | 0.005  | 0.004              | 0.001 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 60                    | 10                | 2.618  | 1.193           | 3.991  | 2.601              | 1.399 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2+1.4                 | 80                    | 10                | 12.772 | 6.699           | 13.246 | 10.906             | 3.651 |
| 120 10 18.063 9.341 17.976 15.127 5.011   40 10 0.011 0.004 0.01 0.008 0.004   60 10 1.677 1.493 3.304 2.158 0.997   0.2+1.6 80 10 3.216 3.317 3.718 3.417 0.266   100 10 12.474 19.273 12.566 14.771 3.899   120 10 28.309 18.449 18.333 21.697 5.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 100                   | 10                | 19.866 | 30.457          | 19.822 | 23.382             | 6.127 |
| 40 10 0.011 0.004 0.01 0.008 0.004   60 10 1.677 1.493 3.304 2.158 0.997   0.2+1.6 80 10 3.216 3.317 3.718 3.417 0.266   100 10 12.474 19.273 12.566 14.771 3.899   120 10 28.309 18.449 18.333 21.697 5.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 120                   | 10                | 18.063 | 9.341           | 17.976 | 15.127             | 5.011 |
| 60 10 1.677 1.493 3.304 2.158 0.997   0.2+1.6 80 10 3.216 3.317 3.718 3.417 0.266   100 10 12.474 19.273 12.566 14.771 3.899   120 10 28.309 18.449 18.333 21.697 5.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | 40                    | 10                | 0.011  | 0.004           | 0.01   | 0.008              | 0.004 |
| 0.2+1.6 80 10 3.216 3.317 3.718 3.417 0.266   100 10 12.474 19.273 12.566 14.771 3.899   120 10 28.309 18.449 18.333 21.697 5.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 60                    | 10                | 1.677  | 1.493           | 3.304  | 2.158              | 0.997 |
| 1001012.47419.27312.56614.7713.8991201028.30918.44918.33321.6975.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2+1.6                 | 80                    | 10                | 3.216  | 3.317           | 3.718  | 3.417              | 0.266 |
| 120 10 28.309 18.449 18.333 21.697 5.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 100                   | 10                | 12.474 | 19.273          | 12.566 | 14.771             | 3.899 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 120                   | 10                | 28.309 | 18.449          | 18.333 | 21.697             | 5.726 |

Table 3. Measurement value of each tube voltage for Al + Sn filtrations

The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter

## V. CONCLUSION

능동형 전자식 개인피폭선량계는 실시간으로 사용자의 방사선 피폭 정도를 알 수 있고 누적이 가능한 장점을 가지고 있어 원자력 분야 방사선 종사자 뿐 아니라 의료분야에서도 그 효용성이 우수하다. 하지만 현재 시판중인 전자식 개인피폭선량계는 의료영역의 저에너지 X선에 대한 응답특성에 있어 오차가 크기 때문에 정확성이 떨어져 의료영역의 저에너지 X선의 피폭선량 모니터링에는 부적절하다.

Si 포토다이오드를 사용한 능동형 전자식 개인피 폭선량계의 개발에 있어 저에너지 X선 영역에서 응답특성을 높이기 위해 본 연구에서는 구간별 필 터에 대한 응답 특성을 확인하였다. 본 연구의 결 과를 바탕으로 40 kVp에서 80 kVp에서는 Al필터를 사용하고 80 kVp에서 120 kVp 구간에서는 Al과 Sn 을 혼합한 필터를 배치하고 노이즈 보정과 회로 보 정을 시행하는 것이 의료영역에서 저에너지 X선에 대해 개발하고자하는 전자식 개인피폭선량계의 정 확성을 향상시킬 수 있을 것으로 기대한다. 본 연 구는 전자식 개인피폭량계의 개발 단계에서 노이 즈 보정과 회로 보정값을 고려하지 않은 한계가 있 으나 저에너지 X선 영역에 대해 응답 선형성을 높 이기 위한 방법으로 진단용 X선 에너지 영역에 따 른 검출성능 확인을 위한 보상필터 최적화 구성을 평가하였다.

### Acknowledgement

본 연구는 2020년도 중소벤처기업부의 산학연 콜라 보 R&D 사업의 지원으로 수행되었습니다.(S2893859)

#### Reference

- B. J. Lee, B. H. Kim, S. Y. Chang, J. S. Kim, "Development of Prototype Electronic Dosimeter using the Silicon PIN Diode Detector", Journal of Radiation Protection and Research, Vol. 25, No. 4, pp. 197-205, 2000.
- [2] U. K. Yi, K. R. Baek, S. G. Kwon, "Implementation of electronic personal dosimeter using silicon PIN

photodiode", Journal of Institute of Control, Robotics and Systems, Vol. 9, No. 4, pp. 296-303, 2003. http://dx.doi.org/10.5302/J.ICROS.2003.9.4.296

- [3] B. J. Lee, W. N. Lee, B. O. Khang, S. Y. Chang, S. R. Rho, H. S. Chae, "A study on development of a PIN semiconductor detector for measuring individual dose", Journal of Radiation Protection and Research, Vol. 28, No. 2, pp. 87-95, 2003.
- [4] S. M. Kwon, J. K. Park, B. S. Kim, "The comparison of angular dependence for optical stimulated luminescence dosimeter(OSLD) and electronic personal dosimeter(EPD) used in Diagnostic Radiology", Journal of Digital Contents Society, Vol. 16, No. 3, pp. 463-470, 2015. http://dx.doi.org/10.9728/dcs.2015.16.3.463
- [5] B. J. Lee, W. Lee, G. Cho, S. Y. Chang, S. R Rho. "Solid-state personal dosimeter using dose conversion algorithm" Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 505, No. 1-2, pp. 403-406, 2003.
- [6] N. Kržanovic, M. Živanovic, O. Ciraj-Bjelac, Đ. Lazarevic, S. Ceklic, S. Stankovic, "Performance testing of selected types of electronic personal dosimeters in X-and gamma radiation fields", Health Physics: the radiation safety journal, Vol. 113, No. 4, pp. 252-261, 2017. http://dx.doi.org/10.1097/HP.0000000000000704
- [7] KOLAS certificated calcitration laboratory, KOREA LABORATORY ACCREDITATION SCHEME web site. [cited 2022 May. 19]. Available from: https://www.knab.go.kr/usr/inf/srh/InfoCrrcInsttSearchLi st.do
- [8] C. Texier, C. Itié, H. Servière, V. Gressier, t. Bolognese-Milsztajn, "Study of the Photon Radiation Performance of Electronic Personal Dosemeters", Radiation Protection Dosimetry, Vol. 96, No. 1-3, pp. 245-249, 2001. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006593
- [9] J. S. Kim, J. M. Kim, Y. H. Lee, D. N. Seo,I. S. Choi, S. R. Nam, Y. S. Yoon, H. J. Kim, H. L. Min, J. Her, S. G. Han, "National Data Analysis of General Radiography Projection Method in Medical Imaging", Journal of radiological science and technology, Vol. 37, No. 3, pp. 169-175, 2014.

- [10] Hamamatsu web page. [cited 2022 Sept. 06] Available from: https://www.hamamatsu.com/us/en/product/optical-sens ors/photodiodes/si-photodiodes/S8559.html
- [11] L. Andreani, M. Bontempi, P. L. Rossi, L. P. Rignanese, M. Zuffa, G. Baldazzi, "Comparison between a silicon PIN diode and a CsI(Tl) coupled to a silicon PIN diode for dosimetric purpose in radiology", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 762, pp. 11-15, 2014. http://dx.doi.org/10.1016/j.nima.2014.05.072
- [12] C. Romei, A. Di Fulvio, C. A. Traino, R. Ciolini, D. d'Errico, "Characterization of a low-cost PIN photodiode for dosimetry in diagnostic radiology", Physica Medica, Vol. 31, No. 1, pp. 112-116, 2015. http://dx.doi.org/10.1016/j.ejmp.2014.11.001
- [13] Toshiba Rotating Anode X-ray Tube Assembly Product Information. [cited 2022 Mar. 20] Available from: http://www.skphotoray.co.kr/datasheet/XRAYTUBE\_E7 239X.pdf
- [14] Korean Raw of Medical diagnostic equipment radiation safety. [cited 2022 Apr. 26] Available from:

https://law.go.kr/%EB%B2%95%EB%A0%B9/%EC%A 7%84%EB%8B%A8%EC%9A%A9%20%EB%B0%A9 %EC%82%AC%EC%84%A0%20%EB%B0%9C%EC %83%9D%EC%9E%A5%EC%B9%98%EC%9D%98% 20%EC%95%88%EC%A0%84%EA%B4%80%EB%A6 %AC%EC%97%90%20%EA%B4%80%ED%95%9C% 20%EA%B7%9C%EC%B9%99

- [15] M. Jung, C. Teissier, P. Siffert, "Dose response simulations of a high sensitivity electronic silicon dosemeter", Radiation Protection Dosimetr, Vol. 51, No. 3, pp. 157-167, 1994. http://dx.doi.org/10.1093/OXFORDJOURNALS.RPD.A 082132
- [16] Thermo Scientific EPD TruDose Electronic Dosimeter Radiological performance information sheet. [cited 2022 Sept. 03] Available from: https://www.thermofisher.com/document-connect/docum ent-connect.html?url=https://assets.thermofisher.com/TF S-Assets%2FCAD%2FDatasheets%2Fepd-trudose-speci fications.pdf

# 능동형 전자식 개인피폭선량계의 저에너지 X선 영역별 최적화를 위한 에너지보상 필터 두께에 대한 연구

김정수<sup>1,\*</sup>, 박연현<sup>2</sup>, 채현식<sup>2</sup>

<sup>1</sup>대구보건대학교 방사선학과 <sup>2</sup>㈜에스에프티테크놀로지

#### 요 약

능동형 전자식 개인피폭선량는 개인의 피폭 선량을 실시간으로 확인할 수 있는 장점을 가진 보조선량계 이다. 하지만 국내에 사용되고 있는 다수의 능동형 개인피폭 선량계는 의료기관에서 사용하는 진단방사선 영역에서 큰 오차와 낮은 응답성을 가진다. 이에 본 연구에서는 Si 포토다이오드 검출기를 사용하는 능동 형 전자식 개인선량계에서 저에너지 영역의 응답특성을 향상시키기 위한 에너지 보상 두께를 평가하였다. 40 kVp에서 80 kVp 영역에서는 Al 0.2 mm + Sn 1.0 mm 필터에서 우수한 응답특성을 보였고 80 kVp에서 120 kVp 영역에서는 Al 0.2 mm + Sn 1.6 mm 필터에서 우수한 응답특성을 보였다.

중심단어: 전자식 개인피폭선량계, 에너지 응답성, 필터, 저에너지 X선, Si 포토다이오드

연구자 정보 이력

|                  | 성명  | 소속            | 직위   |
|------------------|-----|---------------|------|
| (제1저자)<br>(교신저자) | 김정수 | 대구보건대학교 방사선학과 | 교수   |
| (고도러간)           | 박연현 | ㈜에스에프티테크놀로지   | 연구원  |
| (\$\$^\\)        | 채현식 | ㈜에스에프티테크놀로지   | 대표이사 |
|                  |     |               |      |