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Genetic parameter analysis of reproductive traits  
in Large White pigs

Guanghui Yu1, Chuduan Wang2, and Yuan Wang1,2,*

Objective: The primary objective of this study was to determine the genetic parameters for 
reproductive traits among Large White pigs, including the following traits: total number 
born (TNB), number born alive (NBA), litter birth weight (LBW), average birth weight 
(ABW), gestation length (GL), age at first service (AFS) and age at first farrowing (AFF).
Methods: The dataset consisted of 19,036 reproductive records from 4,986 sows, and a 
multi-trait animal model was used to estimate genetic variance components of seven 
reproductive traits.
Results: The heritability estimates for these reproductive traits ranged from 0.09 to 0.26, with 
the highest heritability for GL and AFF, and the lowest heritability for NBA. The repeatabilities 
for TNB, NBA, LWB, ABW, and GL were ranged from 0.16 to 0.34. Genetic and phenotypic 
correlations ranged from –0.41 to 0.99, and –0.34 to 0.98, respectively. In particular, the 
correlations between TNB, NBA and LBW, between AFS and AFF, exhibited a strong positive 
correlation. Furthermore, for TNB, NBA, LBW, ABW, and GL, genetic correlations of the 
same trait between different parities were moderately to strongly correlated (0.32 to 0.97), 
and the correlations of adjacent parities were higher than those of nonadjacent parities.
Conclusion: All the results in the present study can be used as a basis for the genetic assess
ment of the target population. In the formulation of dam line selection index, AFS or AFF 
can be considered to combine with TNB in a multiple trait swine breeding value estimation 
system. Moreover, breeders are encouraged to increase the proportion of sows at parity 3-5 
and reinforce the management of sows at parity 1 and parity ≥8.
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INTRODUCTION

In the pig industry, female reproductive traits are the most functional traits affecting the 
economic benefit of pig production. According to previous studies, reproductive problems 
cause approximately 30% of culling in pig production systems [1]. Thus, increasing attention 
has been given for reproductive performance. Recently, advanced breeding technologies 
based on the best linear unbiased prediction have been applied to the breeding process of 
animal economic traits [2,3]. Understanding genetic parameters of these trait is required 
to accurately estimate breeding values, which is helpful for the formulation of selection 
indices and breeding schemes in pig production, and it is worth mentioning that repro-
ductive traits account for a large proportion of the establishment of dam line selection 
indices by different population [4,5]. Meanwhile, genetic parameters are population spe-
cific, and it is essential to estimate the genetic parameters of different populations [6]. 
  To date, many studies have been performed to estimate the genetic parameters of eco-
nomic traits in pigs, such as growth trait [7], semen traits [8], and litter size traits [9]. 
These results demonstrate the importance of genetic evaluation of economic traits in im-
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proving productivity. However, most sows show different 
physiological development at different parities, which may 
influence the reproductive performance [10]. Therefore, ob-
taining phenotypic records at different parities is important 
to accurately estimate genetic parameters. Besides, in previ-
ous studies, some researchers considered different parities as 
a single trait [2,11], while others considered that a partially 
different genetic control of prolificacy between parity 1 and 
later parities, and treated the first and later parities as differ-
ent traits [12,13]. Thus, understanding the genetic correlation 
between different parities is also helpful for the rational divi-
sion of traits in the process of genetic parameter estimation.
  Based on the above studies, the purpose of this study was 
to estimate the genetic parameters of female reproductive 
traits in Large White pigs, including total number born (TNB), 
number born alive (NBA), litter birth weight (LBW), average 
birth weight (ABW), gestation length (GL), age at first service 
(AFS), and age at first farrowing (AFF). The results of this 
study will facilitate the development of a genetic evaluation 
system for female reproductive traits, and improve the re-
production efficiency of pigs.

MATERIALS AND METHODS 

Ethics statement
All experiments involved in this study followed the “Guide-
lines for Experimental Animals” of the Ministry of Science 
and Technology (Beijing, China). Operations and animal 
care were sustained by the experimental animal ethics com-
mittee of China Agricultural University (approval number: 
GB/T 17236-2008). 

Data
The population used for this study is from the nucleus pig 
breeding farm of Beijing Shunxin Agriculture Co., Ltd., Beijing, 
China. The core group of this farm is comprised approxi-
mately 600 sows and 50 boars. These individuals are fed and 
managed in a consistent manner. The sows were selected 
based on the dam line selection index, which was composed 
of the traits with TNB, backfat at 100 kg live weight, and age 
at 100 kg live weight. The selection intensity of breeding sows 
is 12% and the replacement rate is about 56%. Furthermore, 
culling is usually passive, mainly caused by individuals with 
genetic defects or disease. 
  A total of 19,306 farrowing records, generated from 570 
boars and 4,986 sows, were collected from 2007 to 2016. Seven 
reproductive traits (i.e., TNB, NBA, LBW, ABW, GL, AFS, 
and AFF) were considered in this study. TNB was defined as 
the total number of piglets born per litter, NBA was defined 
as the number of piglets born alive, LBW was defined as the 
total weight of alive piglets, ABW was defined as the average 
weight of each individual, GL was defined as the interval be-

tween insemination and farrowing, AFS was defined as the 
interval from birth to first insemination and AFF was de-
fined as the interval from birth to first farrowing. According 
to the data distribution and prior knowledge, TNB, NBA, 
LBW, ABW, and GL were approximately normally distribut-
ed, but for AFS and AFF, we used the rntransfrom function 
in the GENABEL R package to normalize the phenotype 
values. Data within the mean plus or minus three standard 
deviations were retained in the present study. 

Statistical analysis
In this study, we first analyzed the effects of herds, years, sea-
sons, and parities on reproductive traits using PROC general 
linear model in SAS 9.2 (SAS Institute Inc., Cary, NC, USA). 
The linear model was used as Model A:

  Model A: Yijkl = μ+hi+mj+sk+pl+eijkl

where Yijkl is the phenotypic value of each trait; μ is the over-
all mean; hi represents the fixed effect of farms, which contains 
2 herds; mj represents the fixed effect of farrowing year, which 
includes 10 levels (from 2007 to 2016) ; sk represents the fixed 
effect of season, which includes 4 seasons (spring: form March 
to May; summer: from June to August; autumn: from Sep-
tember to November; winter: from December to February); 
pl represents the fixed effect of parity, which includes 8 levels 
(1, 2, 3, 4, 5, 6, 7, and ≥8); eijkl is the random residual corre-
sponding to the trait observation value. Significance was tested 
using Duncan's multiple comparison test.
  A multi-trait animal model was used to estimate the ge-
netic variance components. The model B was fitted for TNB, 
NBA, LBW, ABW, and GL, model C was fitted for AFS and 
AFF: 

  Model B: Y = Xβ+Za+Wpe+e 

  Model C: Y = Xβ+Za+e 

where in Models B and C, Y is the vector of observation; β is 
the vector of fixed effects (in Model B, fixed effects contain 
herd, year, season and parity; in Model C, fixed effects con-
tain herd, year and season); a is the vector of additive genetic 
effects; pe is the vector of permanent environments of indi-
viduals for TNB, NBA, LBW, ABW, and GL; e is a vector of 
residuals, and X, Z, and W are incidence matrices associated 
with β, a, and pe, respectively. In addition, for TNB, NBA, 
LBW, ABW, and GL, we calculated the genetic correlation 
and phenotypic correlation between the same reproductive 
trait at different parities using Model C. 
  In this study, we used a restricted maximum likelihood 
procedure to estimate the variance components of each trait 
in ASReml software [14]. Heritabilities, repeatabilities, ge-
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netic correlations and the proportion of phenotypic variance 
explained by permanent environmental effects were calcu-
lated as follows: 
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Fixed effects analysis 
As shown in Supplementary Table S1, the effect of years and 
parities were extremely significantly (p<0.01) associated with 
seven reproductive traits, while the effect of herds were ex-
tremely significantly (p<0.01) associated with TNB, ABW, 
GL, AFS, and AFF, the effect of seasons were significantly 
(p<0.01) or extremely significantly (p<0.01) associated with 
TNB, ABW, AFS, and AFF. Therefore, different factors should 
be considered in the model of genetic variance component 
estimation. In addition, the results of multiple comparison 
test were shown in Supplementary Table S2-S5. Among them, 
Supplementary Table S4 showed the effect of years on repro-
ductive traits, and the best performance was in 2015 and 
2016. Supplementary Table S5 showed the effect of parities 
on reproductive traits, and the reproductive performance of 
sows was best at parity 3-5, while the performance at parity 
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Genetic parameter analysis
The estimates of genetic variance components and genetic 
parameters were shown are Table 2. Among them, additive 

Table 1. Descriptive statistics of seven reproductive traits

Traits Number Unit Average SD Min Max CV (%)

TNB 18,883 each 10.46 2.87 3 18 27.44 
NBA 18,713 each 10.05 2.77 3 17 27.56 
LBW 17,484 kg 14.21 3.92 2.66 29.2 27.59 
ABW 17,484 kg 1.43 0.21 0.8 2.7 14.69 
GL 18,982 day 115.1 1.81 105 127 1.57 
AFS 4,362 day 282.38 51.13 148 440 18.11 
AFF 4,362 day 397.82 51.25 260 557 12.88 

TNB, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age 
at first farrowing; SD, standard deviation; Min, minimum; Max, maximum; CV, coefficient of variation.
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genetic variances ranged from 0.005 (ABW) to 0.858 (GL), 
and the proportion of phenotypic variance caused by perma-
nent environmental effects was lower than 0.1. The heritabilities 
of the 7 reproductive traits varied from 0.09 to 0.26, with the 
highest heritability for GL and AFF, and the lowest herita-
bility for NBA. The repeatabilities for TNB, NBA, LWB, ABW, 
and GL were ranged from 0.16 to 0.34.
  As shown in Table 3, genetic and phenotypic correlations 
between different traits were ranged from –0.41 to 0.99, and 
–0.34 to 0.98, respectively. In particular, estimated genetic 
correlations between TNB, NBA and LBW, and between 
AFS and AFF, were larger than 0.8, which showed a strongly 
positive correlation. In the process of breeding, the perfor-
mance of several other traits can be improved by selecting a 
certain trait, while the genetic correlations between ABW 
and TNB, NBA exhibited a moderate negative correlation. 
With the increase in the number of piglets born, the individ-
ual birth weight gradually decreased, which also led to an 
increasing number of weak piglets. Phenotypic correlations, 
such as between TNB, NBA, and LBW, showed a trend con-
sistent with genetic correlations. Furthermore, for TNB, NBA, 
LBW, ABW, and GL, the genetic correlations of one trait in 
different parities were moderately to strongly correlated (0.32 
to 0.97), and the correlations of adjacent parities were higher 
than those of nonadjacent parities (Table 4). However, the 
phenotypic correlations of one trait in different parities ranged 
from 0.10 to 0.38, which showed a weak to moderate corre-
lation. 

DISCUSSION 

Understanding the genetic parameters of the target popula-
tion is crucial for making animal breeding programs, which 
helps to predict the response to selection and monitor ge-
netic progress [6]. Seven economically important traits related 
to sow efficiency (i.e., TNB, NBA, LBW, ABW, GL, AFS, and 
AFF) were considered in this study, and the results, such as 
the influence of environmental factors, the estimates of heri-
tabilities and genetic correlations between different traits, 

can be used to provide useful information for the further 
breeding process of the population. Currently, only TNB 
trait is considered in the dam-line selection index recom-
mended by the China Swine Genetic Improvement Program, 
more reproductive traits should also be taken into account 
[9]. Thus, knowledge of genetic correlations of TNB with 
other economically important prolificacy traits is required 

Table 3. Genetic correlation and phenotypic correlation between reproductive traits

Traits TNB NBA LBW ABW GL AFS AFF

TNB - 0.98 (0.005)1) 0.83(0.031) 2) –0.39(0.075) –0.26(0.069) –0.11(0.09) –0.11(0.09)
NBA 0.94(0.001) - 0.83(0.029) –0.41(0.079) –0.21(0.072) –0.13(0.09) –0.12(0.09)
LBW 0.80(0.003) 0.87(0.002) - 0.15(0.09) –0.11(0.075) –0.06(0.05) –0.08(0.06)
ABW –0.34(0.008) –0.31(0.007) 0.15(0.008) - 0.21(0.071) 0.04(0.08) 0.02(0.08)
GL –0.15(0.009) –0.13(0.009) –0.08(0.009) 0.13 (0.01) - 0.07(0.08) 0.15(0.07)
AFS 0.03 (0.015) 0.02 (0.016) 0.13(0.014) 0.051(0.02) 0.05(0.016) - 0.99(0.01)
AFF 0.03 (0.013) 0.022(0.016) 0.13 (0.014) 0.05(0.018) 0.31(0.016) 0.98 (0.008) -

TNB, total number born; NBA, number born alive; LBW, litter birth weight; ABW, average birth weight; GL, gestation length; AFS, age at first service; AFF, age 
at first farrowing.
1) The estimation of genetic correlations are shown in above diagonal, and phenotypic correlations are shown in below diagonal.
2) The estimated standard errors are shown in parentheses.

Table 4. Genetic correlation and phenotypic correlation of one trait 
at different parities

Traits
Parity

1 2 3 4

TNB
1 - 0.911) (0.08) 0.77(0.126)2) 0.72(0.135)
2 0.18 (0.017) - 0.98(0.09) 0.78(0.136)
3 0.12 (0.019) 0.20(0.019) - 0.84(0.14)
4 0.16 (0.021) 0.20(0.021) 0.20(0.021) -

NBA
1 - 0.91(0.09) 0.71(0.15) 0.71(0.18)
2 0.16(0.017) - 0.97(0.11) 0.88(0.17)
3 0.11(0.019) 0.19(0.019) - 0.79(0.19)
4 0.14(0.021) 0.18(0.021) 0.19(0.021) -

LBW
1 - 0.92(0.1) 0.66(0.17) 0.32(0.22)
2 0.20(0.018) - 0.93(0.16) 0.83(0.2)
3 0.11(0.02) 0.18(0.019) - 0.78(0.25)
4 0.10(0.022) 0.18(0.022) 0.19(0.022) -

ABW
1 - 0.83(0.09) 0.72(0.11) 0.58(0.14)
2 0.23(0.017) - 0.87(0.07) 0.66(0.14)
3 0.21(0.019) 0.31(0.023) - 0.98(0.1)
4 0.18(0.022) 0.22(0.022) 0.28(0.021) -

GL
1 - 0.94(0.04) 0.76(0.06) 0.65(0.07)
2 0.32(0.016) - 0.86(0.06) 0.85(0.05)
3 0.28(0.018) 0.34(0.018) - 0.99(0.035)
4 0.27(0.021) 0.36(0.02) 0.38(0.019) -

TNB, total number born; NBA, number born alive; LBW, litter birth weight; 
ABW, average birth weight; GL, gestation length.
1) The estimation of genetic correlations are shown in above diagonal, 
and phenotypic correlations are shown in below diagonal.
2) The estimated standard errors are shown in parentheses.
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for combining these traits in a multiple trait swine breeding 
value estimation system.
  As we known, both environmental and genetic factors 
can affect the reproductive performance of sows. We analyzed 
the effects of herd, year, season, and parity on reproductive 
traits in this study. Results showed that different factors 
need to be considered when making mating plans. Among 
them, breeders paid more attention to the effect of parities. 
Some researchers found that the sows have better reproduc-
tive performance at or beyond third parity [11,16]; however, 
Takai and Koketsu [17] considered that the best performance 
of sows was at the first or second parity. In our study, the 
best performance was at parity 3-5, while parity 1 and parity 
≥8 were worse than other parity. Thus, breeders should im-
plement different management and feed design for different 
parities. For instance, sows at first parity need more than 
10% to 15% protein to sustain their own growth, while sows 
at higher parity require more energy for maintenance [11,18]. 
Meanwhile, the proportion of sows at parity 3-5 should also 
be increased to improve economic efficiency.
  A multi-trait animal model was used to estimate the 
variance components of seven reproductive traits in this 
population. Among them, the estimates of the additive ge-
netic variances were able to help animal breeders measure 
the genetic variations and determine the response to selec-
tion. The estimate of additive genetic variance for TNB was 
larger than those reported by Zhang et al [9], who estimat-
ed additive genetic variances ranging from 0.534 to 0.770 
in the connected groups of Large White pigs, and Ye et al 
[11], who estimated the value of 0.786 in Large White pigs, 
while smaller than the results obtained by Thekkoot et al 
[19] and Zhang et al [2], who reported estimated additive 
genetic variances of 1.529 and 1.480, respectively. The esti-
mate for NBA was similar to TNB, but the difference was 
that the additive genetic variance for NBA was smaller than 
that found by Ye et al [11] with a value of 0.786. In addi-
tion, the estimate of AFF was less than that from Zhang et 
al [9], while the estimate for GL was greater than that from 
Zhang et al [2]. The estimated variance components from 
different populations for the same traits are usually very 
close or fluctuate in a small range, and the differences be-
tween the estimation of variance components are mainly 
related to the population size and the dataset [20]. 
  In this study, the estimated heritabilities of seven repro-
ductive traits ranged from 0.09 to 0.26. Heritabilities for TNB 
and NBA were in the range reported in previous studies, for 
instance, Wolf et al [21] estimated heritabilities of 0.13 for 
TNB and 0.14 for NBA in a Czech Large White pig popula-
tion, Zhang et al [2] estimated that the heritabilities of both 
traits were 0.13, and Hollema et al [22] estimated that the 
heritability for NBA was 0.11, which were slightly higher 
than our estimated heritabilities. Furthermore, our estimates 

of heritabilities were larger than those from Ye et al [11], who 
reported estimated heritabilities for these two traits of 0.07 
and 0.06, respectively. Heritability for LBW was also consis-
tent with published literature, such as the results of Wolf et al 
[21] and Ye et al [11], who reported estimated heritabilities 
of 0.06 and 0.13, respectively. The estimate of heritability for 
ABW was smaller than those from Kaufmann et al [23] and 
Hollema et al [22], with the estimated heritabilities of 0.21 
and 0.29, respectively. The reason for this situation may be 
related to the breeding plan of the target population, which 
influences the piglet birth weight. In addition, the estimated 
heritabilities for GL, AFS and AFF were approximately 0.25. 
For GL, there were some differences among different popu-
lations. Zhang et al [2] and Hollema et al [22] estimated 
heritabilities of 0.14 and 0.21, respectively, which were slightly 
lower than the results in our study; and the heritability esti-
mated by Hanenberg et al [24] was consistent with this study. 
However, due to the small phenotypic variation in GL, the 
possibility of improving the reproductive performance of 
sows by changing the gestation cycle was also reduced. For 
AFS and AFF, these two traits have received increasing at-
tention because they can be treated as an evaluation of early 
reproductive performance of sows. The heritabilities of AFS 
and AFF were in the range of those obtained in previous 
studies, which ranged from 0.11 to 0.31 [9,24,25]. Only the 
first litter records can be used in estimating the heritabilities 
of AFS and AFF, and thus, the accuracy of the results can be 
improved by increasing the amount of data collected. Besides, 
the estimated repeatabilities for TNB, NBA, and LBW were 
consistent with the report of Zhang et al [9] and Chen et al 
[20], who reported the repeatabilities ranged from 0.14 to 
0.17; while Lopez and Seo [13] estimated the repeatabilities 
of TNB and NBA were 0.07 and 0.06, respectively, lower 
than our results.
  In the present study, genetic correlations between different 
traits ranged from –0.41 to 0.98. Among them, the estimated 
genetic correlations between TNB and NBA agreed with the 
results from Roehe et al [12], Zhang et al [9], and Ye et al [11], 
who reported genetic correlations between 0.87 and 0.98. 
Estimates of genetic correlation between TNB and NBA were 
high, which suggests that selection for either TNB or NBA 
will result in a relevant response on either of the traits not 
selected for. The genetic correlations between LBW and litter 
size traits were generally high and consistent with the results 
obtained by Wolf et al [21] and Schneider et al [26]. There-
fore, in the established dam line selection index, selection 
based on TNB will improve NBA and LBW simultaneously. 
The genetic correlation between ABW and NBA was similar 
to the result estimated by Hollema et al [22], who estimated 
the parameter to be –0.4. Moreover, piglet birth weight can 
be used as a selection criterion to improve the survival of pre-
weaned piglets, and occupy an important part of the selection 
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index. However, the genetic correlations between ABW and 
GL showed a moderately positive correlation, which was in-
consistent with the estimated genetic correlation that was 
close to 0 obtained by Hollema et al [22]. For AFS and AFF, 
there was a high positive genetic correlation between the 
two traits. AFF can be considered as a comprehensive trait 
that combines AFS and GL, and the variation in GL was small, 
which was an important factor leading to the strong positive 
correlation between them. This is consistent with the result 
obtained by Holm et al [27], who suggested that the portion 
that explains AFS genetic variation accounts for a large pro-
portion of AFF genetic variation. Negative genetic correlations 
of AFS and AFF with litter traits indicated that sows with re-
duced AFS and AFF were observed to have increased values 
for the traits TNB and NBA [9]. Thus, AFS or AFF can be 
considered in the formulation of dam line selection index in 
the future. In addition, the phenotypic correlations showed 
consistent changes with the genetic correlations, which was 
similar to previous studies [9,11,22].
  Genetic correlations between different parities for all traits 
were moderately to strongly positive. For TNB and NBA, 
genetic correlations between different parities ranged from 
0.71 to 0.98, which was consistent with Ye et al [11] and Lo-
pez and Seo [13], who reported that the genetic correlations 
varied from 0.48 to 0.99. In addition, genetic correlation be-
tween parity 1 and other parities showed a strong positive 
correlation (0.71 to 0.98) in our study, which was higher than 
those reported in the above research (0.48 to 0.74). There-
fore, it is reasonable for us to consider different parities as 
the same trait. While the estimated phenotypic correlations 
between different parities were weaker than their correspond-
ing genetic correlations, which also indicated that it was 
inadvisable to select sows based on the reproductive perfor-
mance after only one parity. However, for other reproductive 
traits, there have been limited reports of correlations between 
different parities, our results can serve as an important refer-
ence. 

CONCLUSION

In this study, we estimated the genetic parameters for seven 
reproductive traits in a Large White pig population, which 
can be used as a basis for the genetic assessment of the target 
population, and improve the efficiency of breeding work. 
The performance of some traits, such as TNB, NBA, and 
LBW, showing a high genetic correlation, can be improved 
by selecting a certain trait. Meanwhile, AFS or AFF can also 
be considered in the formulation of dam line selection index 
in the future. In addition, increasing the proportion of sows 
at parity 3 to 5, and reinforcing the management of sows at 
parity 1 and parity ≥8 can be an effective method to improve 
economic efficiency.
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