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thermotolerance traits in cattle – A review
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Abstract: Thermal stress due to extreme changes in the thermal environment is a critical 
issue in cattle production. Many previous findings have shown a decrease in feed intake, 
milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal 
stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency 
of breeding programs to reduce those adverse impacts. The recent advances in molecular 
genetics have provided significant breeding advantages that allow the identification of 
molecular markers in both beef and dairy cattle breeding, including marker-assisted 
selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide 
polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA 
markers for MAS due to their abundance in the genome’s coding and non-coding regions. 
Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, 
MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles 
in many cellular activities during thermal stress and protecting cells against stress, making 
them potential candidate genes for molecular markers of thermotolerance. This review 
highlights the associations of SNPs within these genes with thermotolerance traits (e.g., 
blood biochemistry and physiological responses) and suggests their potential use as 
MAS in thermotolerant cattle breeding.

Keywords: Cattle; Genes; Heat Stress; Marker-assisted Selection; Single Nucleotide 
Polymorphism; Thermotolerance

INTRODUCTION

Recently, global climate change has had an adverse impact on the adaptability and surviv-
ability of farm animals to thermal assault. The elevation of ambient temperature, especially 
in summer, is a critical issue in the agricultural-related industry. One of the most impor-
tant effects of thermal stress in the livestock industry is the decrease in cattle productivity 
and reproductivity. Numerous studies have demonstrated the significant decline in cattle 
performance when subjected to thermal stress; reduction in feed intake [1,2], milk yield 
[3,4], growth rate [5,6], and reproductive efficiency [7,8]. Thermal stress, such as heat 
stress, has also caused economic losses of around $897 million and $369 million annually 
for dairy and beef cattle industries, respectively [9], pressuring livestock producers to adopt 
effective preventative measures. 
 To mitigate the adverse impacts of thermal stress on cattle productivity, some strategies 
can be implemented, including genetic selection, modification of the environment, and 
nutritional intervention [10]. Besides, scientific techniques such as cooling systems and 
sprinkler treatments have been developed to reduce the adverse impact of heat stress on 
animals [11,12]. It has been reported that within-breed genetic variation exists for ther-
motolerance, allowing genetic selection for improved thermotolerance and may increasing 
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animal resilience and welfare [13]. Furthermore, animal ge-
netic selection for thermotolerance provides cumulative and 
permanent solutions at a relatively low cost [14]. To date, ge-
netic selection in beef and dairy cattle is directed to productive 
traits, such as growth rate, meat production, milk yield, and 
milk quality. However, a continual selection for productive 
traits ignoring heat tolerance, results in decreasing heat tol-
erance [7]. There are considerable evidence that there is a 
genetic antagonism between productive traits and the spe-
cific ability to respond to heat stress [7,14,15]. For instance, 
selection for milk yield results in a poor response of the ani-
mals to heat stress [15]. Therefore, a combined selection for 
production and thermotolerance under highly modified en-
vironments, in both tropical and sub-tropical regions, should 
be considered. Furthermore, a set of phenotypes, including 
body temperature (BT) and respiration rate (RR), in com-
bination with measures of indicators of heat tolerance in 
milk, can be used as an alternative in the genomic selection 
of heat-tolerant dairy cattle without damaging progress in 
milk production [14].
 In conventional breeding methods, the selection of superior 
animals with economically important traits related to thermal 
stress is based on observed phenotypes and information on 
animal pedigree. However, the advancement of molecular 
genetics offers several approaches enabling the researchers 
to improve the accuracy of estimated breeding values and 
accelerate the achievements by selecting animals based on 
their genotypes rather than waiting to measure their physical 
attributes (phenotype) later in life. In molecular breeding 
methods, marker-assisted selection (MAS) is one of the ap-
proaches that allow the identification of specific DNA 
variations that are associated with particular economic traits 
like thermotolerance. Due to some advantages, single nucleo-
tide polymorphisms (SNPs) are desirable DNA markers for 
MAS in livestock breeding. The SNPs are abundant through-
out an organism’s genome (both coding and non-coding 
regions). The SNPs that cause an amino acid substitution 
in the gene coding regions are called non-synonymous; 
those that do not are synonymous. In addition, SNPs are 
more stably inherited than other DNA markers, making 
them more suited as long-term selection markers [16]. 
 In cattle, several SNPs within some genes (e.g., HSP70, 
HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, 
and ATP1A1) have been reported to be associated with ther-
motolerance traits [17-25]. All the mentioned genes have 
critical roles in many cellular activities during thermal stress, 
protecting cells against stress. Furthermore, stress-induced 
gene expression and activation of heat shock proteins (HSPs) 
are key indicators of the animal’s response to thermal stress 
in cellular and molecular activities [26]. Some potential in-
dicators of thermal stress, such as blood biochemistry and 
physiological responses (BT, RR, and rectal temperature [RT]) 

were proposed to elucidate the impact of the mentioned genes 
on thermotolerance in cattle [17,18,27]. BT and RR can be 
measured using automated phenotyping technologies [28]. 
Therefore, it is very important to have deep knowledge about 
the genetic basis of the animal’s response to thermal stress to 
identify molecular markers for thermotolerance in livestock 
breeding. 
 This study discussed some potential candidate genes and 
their associations with thermotolerance traits in cattle. The 
genes discussed in this review included HSP70, HSP90, HSF1, 
EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1 
(Table 1).

THERMOTOLERANCE TRAITS IN 
CATTLE

It is well-known that temperature is one of the significant 
environmental factors affecting the livestock populations’ 
health and productivity. Rising global temperatures put heat 
stress at the center of ever-growing concern regarding live-
stock populations across tropical and temperate zones [29]. 
Genetic selection for thermotolerance is likely to be one of 
the potential strategies to overcome the effect of rising tem-
peratures on cattle productivity. Carabaño et al [30] proposed 
several measurements as indicators of thermotolerance in 
animals, including BT, heart rate (HR), RR, and sweating 
rate (SR). Several biomarkers like blood biochemical param-
eters have also been proposed as selection criteria to identify 
thermo-tolerant animals [17]. It has been reported that RT 
is the best predictor of core BT. The heritability of RT during 
heat stress is moderate making it possible to use this trait 
as selection criteria to improve thermotolerance [31]. How-
ever, the inheritance of physiological traits, such as RT and 
HR is still little known, owing the fact that they are extremely 
labor-intensive to collect, especially in a large-scale selec-
tion program. Koltes et al [28] proposed some automated 
temperature detection devices that can be used to provide 
real-time temperature data and monitor potential thermal 
stress in animals. Those devices allow research that can in-
form producers on how best to manage or select thermo-
tolerant animals.
 Identification of thermo-tolerant animals is challenging 
because the responses to heat stress are complex and vari-
able. Besides, there is antagonism between thermotolerance 
and productive traits, as reported in some dairy cattle popu-
lations [7,14,15,32]. For instance, selection for higher milk 
yield results in a reduced animal’s ability to cope with heat 
stress [15]. Negative genetic correlations from –0.85 to –0.24 
between thermotolerance and productive traits (e.g., milk 
yield) have been observed in dairy cattle [32]. Therefore, it is 
important to monitor thermotolerance when selection for 
productive traits is implemented in production systems in-
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Table 1. Effects of SNPs in some genes on thermotolerance in cattle

Gene SNP 
GenkBank 
accession 
number 

Location Amino acid 
substitution Breeds analyzed Associated trait Reference

HSP70 A-12G AY149618.1 5′ Flanking Region None Holstein cattle LA, DA,and SOD [17]
C181T AY149618.1 5′ Flanking Region None Holstein cattle LA [17]
A72G AY149618.1 5′ Flanking Region None Holstein cattle LPO [17]
C131G AY149618.1 5′ Flanking Region None Holstein cattle DA and SOD [17]
–42− (C/T) AY149618.1 Promoter None Inner-Mongolia Sanhe cattle Blood triiodothyronine 

(T3)
[43]

–105+(G/T) AY149618.1 5′-UTR None Inner-Mongolia Sanhe cattle Blood triiodothyronine 
(T3) and thyroxine (T4)

[43]

–181+(C/T) AY149618.1 5′-UTR None Inner-Mongolia Sanhe cattle Blood triiodothyronine 
(T3)

[43]

–205+(C/T) AY149618.1 5′-UTR None Inner-Mongolia Sanhe cattle Blood triiodothyronine 
(T3)

[43]

G149T NM_174550.1 Coding region Aspartate to Tyrosine Tharparkar cattle RT, ART, HTC, and RR [44]
G149C NM_174550.1 Coding region Aspartate to Histidine Tharparkar cattle RT, ART, HTC, and RR [44]
C146T NM_174550.1 Exon 1 None Nigerian zebu: White Fulani, Sokoto 

Gudali, Red Bororo, and Ambala
HTC [45]

C151T NM_174550.1 Exon 1 Serine to Leucine Nigerian zebu: White Fulani, Sokoto 
Gudali, Red Bororo, and Ambala

HTC [45]

G90A NM_174550.1 Exon 1 Alanine to Arginine Nigerian zebu: White Fulani, Sokoto 
Gudali, Red Bororo, and Ambala

HTC [45]

C219A NM_174550.1 Exon 1 Cysteine to Threonine Nigerian zebu: White Fulani, Sokoto 
Gudali, Red Bororo, and Ambala

HTC [45]

G1128T U09861 Promoter region None Holstein cattle Cell viability, HSP70 
expression

[50]

HSP90 T116G AC_000178.1 Exon 3 Threonine to Histidine Red Bororo cattle BT, RT, RR, and HTC [18]
G220C AC_000178.1 Exon 3 Arginine to Serine Sokoto Gudali BT, RT, RR, and HTC [18]
G346A AC_000178.1 Exon 3 Serine to Leucine Ambala BT, RT, RR, and HTC [18]
G390A AC_000178.1 Exon 3 Aspartate to Tyrosine White Fulani BT, RT, RR, and HTC [18]

HSP90AB1 T4338C NW001494158 Intron 9 None White Lamphun and Mountainas HTC [61]
T4338C NW001494158 Intron 9 None Sahiwal and Frieswal HTC [62]
C5248T NW001494158 Intron 11 None White Lamphun and Mountainas HTC [61]
C1787061T Not mentioned Intron 10 None Sahiwal RT [123]

HSP90AA1 g.1209A > G AC_000178.1 Exon 3 None Karan Fries RR, RT, and HTC [27]
g.−87G > C AC_000178.1 Promoter region None Chinese Holstein HSP90AA1 mRNA expres-

sion
[63]

HSF1 g.616087A > G NC_037341.1 Coding region Valine into Alanine Chinese cattle T, RH, THI [19]
T909C NC_007312.2 Intron 3 None Chinese Holstein PCE [71]
G4693T NC_007312.2 3’-UTR None Chinese Holstein HTC, HSF1 expression [71]
G1451T NC_007311.3 Intron 3 None Chinese Holstein None [74]

EIF2AK4 g.35615224 T > G, NC_037337.1 Exon 6 Isoleucine to Serine Chinese cattle, Burma, Angus T, RH, and THI [20]
HSBP1 g.324G > C NC_007316.3 Intron 1 None Chinese Holstein None [21]

g.589C > T NC_007316.3 Intron 1 None Chinese Holstein None [21]
g.651C > G NC_007316.3 Exon 2 None Chinese Holstein PCE [21]

HSPB8 g.507G > A AC_000174.1 Exon 1 None Sahiwal RR, RT, and HTC [22]
g.881T > C AC_000174.1 Intron 1 None Sahiwal None [22]

HSPB7 g.136054902 C > G NC_037329.1 Coding region Alanine to Glycine Chinese cattle, Angus, Indian zebu T, RH, and THI [23]
MYO1A rs208210464 NC_037332.1 Exon region None Chinese cattle, Angus, Indian zebu T, RH, THI, and SR [24]

rs110123931 NC_037332.1 Exon region None Chinese cattle, Angus, Indian zebu T, RH, THI, and SR [24]
rs209999142 NC_037332.1 Exon region Phenylalanine to Serine Chinese cattle, Angus, Indian zebu T, RH, THI, and SR [24]
rs135771836 NC_037332.1 Intron region None Chinese cattle, Angus, Indian zebu T, RH, THI, and SR [24]
g.56390345 A > G NC_037332.1 Coding region Isoleucine into Valine Chinese cattle, Angus, Burma T, RH, THI, and SR [109]

ATP1A1 –14103G > A NC_007301.3 Exon 14 None Holstein cattle HTC and RR [25]
–14242C > T NC_007301.3 Intron 14 None Holstein cattle HTC and RR [25]
C2789A NC_007301.3 Exon 17 None Holstein cattle Heat resistance [110]
C2789A NC_007301.3 Exon 17 None Vrindavani and Tharparkar HTC and RT [112]
T27008243C Not mentioned Not mentioned Not mentioned Sahiwal RR [111]
A27008223G Not mentioned Not mentioned Not mentioned Karan Fries RR [111]

SNP, single-nucleotide polymorphism; HSP70, heat shock proteins 70; LA, lactate concentration in blood; SOD, superoxide dismutase concentration in blood; LPO, lipid perioxide 
concentration in blood; DA, dopamine concentration in blood; RT, rectal temperature; ART, average rectal temperature; HTC, heat tolerance coefficient; RR, respiration rate; ARR, 
average respiration rate; BT, body temperature; T, annual temperature; RH, relative humidity; THI, temperature humidity index; SR, average annual sunshine hours (100-cloudiness); 
PCE, potassium content in erythrocytes; HSF1, heat shock factors 1; EIF2AK4, eukaryotic translation initiation factor 2-alpha kinase 4; HSBP1, heat shock factor binding protein 1; 
MYO1A, myosin-1a; ATP1A1, ATPase Na+/K+ transporting subunit alpha 1.
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fluenced by heat stress. Furthermore, there are substantial 
genetic variations in an individual animal to cope with greater 
heat loads, with a moderate degree of genotype x environ-
ment interaction. This suggests that animals that produce 
the most in comfort may not be the best animals under heat 
stress [30]. Consequently, the genetic variation in tolerance 
to heat stress should be considered in the selection of dairy 
cattle raised under modified environments in both tropical 
and sub-tropical regions. 

CANDIDATE GENES FOR 
THERMOTOLERANCE

Heat shock protein 70 (HSP70)
Heat shock proteins (HSPs) are a group of proteins that protect 
cells from harmful oxidative stress. The HSPs family con-
sists of HSP110, HSP100, HSP90, HSP70, HSP60, HSP40, 
HSP10, and small HSP [33]. Among the HSPs, the proteins 
of molecular mass 70 kDa, termed HSP70, is the most es-
sential molecular chaperone of primary importance to all 
mammalian cells, which acts by binding to other cellular 
proteins and facilitating intracellular transport [34]. HSP70 
is produced by the HSP70 gene, characterized by a single 
exon. The open reading frame of this gene is approximately 
1926, and its protein consists of 641 amino acids, of which 
92 and 82 are highly basic and acidic amino acids, respectively 
[35]. Heat shock genes are activated by stressful stimuli, fur-
ther forming HSPs. The HSP70 expression in heat-stressed 
dairy animals was found to be the most responsive compared 
to other HSPs chaperones. Therefore, the HSP70 expression 
profile could be beneficial as a biomarker to determine the 
effect of thermal stress in animals [36]. 
 The HSP70 gene family in bovine consists of four genes, 
including HSP70-1, HSP70-2, HSP70-3, and HSP70-4 [37]. 
In cattle, both the HSP70-1 and HSP70-2 genes are located 
on chromosome 23 band 22 (the BoLA region). In contrast, 
the HSP70-3 gene is located on chromosome 10 band 34, 
and the HSP70-4 is localized at chromosome 3 band 13 [38]. 
Gallagher et al [38] screened bovine genomic DNA for hy-
bridization with the HSP70 cDNA in humans. They found 
that bovine HSP70-1,2 were homologous with human HSPA1 
and HSPA1L on chromosome 6p21.3, while bovine HSP70-
3 was homologous with a human HSP70 gene on chromosome 
14q22-q24 and bovine HSP70-4 was the homolog of the hu-
man HSPA-6,-7 genes on chromosome 1. 
 Figure 1 shows the molecular mechanism for the expres-
sion of HSP70 within a cell. A cell undergoes molecular 
changes when exposed to thermal stress. In this regard, most 
of the HSP family genes, including HSP70, have crucial cyto-
protective effects and are involved in many regulatory pathways 
related to cell stress response [33]. Besides the behavioral 
and physiological responses, thermal stress can induce the 

HSP70 expression [39,40]. However, genetic variation among 
individual animals may cause varying thermal stress coping 
capacities. Therefore, understanding the physiological systems 
that are controlled by genes involved in thermoregulation is 
important to prioritize variants in genomic selection strate-
gies in addition to understanding the modulation of genotype 
× environment interaction [41]. 
 Xu et al [42] identified 193 differentially expressed genes 
in peripheral blood samples of Sanhe cattle exposed to se-
vere cold stress (–32°C for 3 h). Out of the 193 candidate 
genes, the expression of HSP70 significantly increased after 
cold exposure (p<0.05). An earlier study conducted by Ab-
bas et al [17] on lactating Holstein cows under heat and cold 
stress observed a significant association between SNPs in the 
5' flanking region of the HSP70 gene and blood biochemical 
parameters. SNPs A-12G and C181T in the HSP70 gene sig-
nificantly affected (p<0.05) lactate concentration, while A72G 
was associated (p<0.05) with lipid peroxide concentration 
under heat stress conditions, and the same association exists 
for SNPs A-12G and SNP C131G with dopamine and super-
oxide dismutase concentrations [17].
 Polymorphisms in the HSP70 gene have also been associ-
ated with blood biochemistry in Inner-Mongolia Sanhe cattle, 
a dual-purpose (milk and meat) cattle breed in the Inner 
Mongolia Autonomous Region of China [43]. Among 20 
SNPs identified in the HSP70 gene in Sanhe cattle, SNP-42– 
located in the promoter region and SNPs -105+, -181+, and 
-205+ localized in the 5′- untranslated region (UTR) have 
been associated with blood triiodothyronine (T3), while SNP 
-105+ has been associated with blood thyroxine (T4). The 
SNPs -42− and -205+ have been observed to be the causative 
mutations involved in regulating HSP70 promoter activity 
[43]. Amino acid changes from aspartate to tyrosine and 
from aspartate to histidine due to G>T and G>C substitu-
tions, respectively, at 149th of the amplicon (295 bp) in the 
HSP70 gene in Tharparkar cattle have been identified to pro-
duce two alleles (alleles A and B with nucleotides T and C, 
respectively), in which genotype AA was superior in heat 
tolerance [44]. Also, the identified SNP was novel and has 
been submitted to National Center for Biotechnology Infor-
mation (NCBI) with GenBank Accession Number JX966362 
for allele A and JX966363 for allele B. Onasanya et al [45] in 
their earlier study identified twelve SNPs of the HSP70 gene 
in four zebu breeds of Nigeria; White Fulani, Sokoto Gudali, 
Red Bororo, and Ambala. Of the twelve variants, four (C151T, 
C146T, G90A, and C219A) were unique as they were detected 
in all the analyzed breeds. The SNP C146T was synonymous, 
while C151T, G90A, and C219A were non-synonymous 
mutations, causing changes in the coded proteins from ser-
ine to leucine, from alanine to arginine, and from cysteine to 
threonine, respectively. Regarding the four SNPs, heterozy-
gous animals had lower a heat tolerance coefficient (HTC), 
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suggesting their potential to withstand heat stress than ho-
mozygous counterparts [45]. 
 Prihandini et al [46] identified fourteen SNPs in the 5’- 
UTR of the HSP70 gene in several cattle breeds in Indonesia 
(Galekan, Bali, Jabres, Belgian Blue×Peranakan Ongole [PO] 
cross, Rambon, Madura, and PO). The SNPs included C1036T, 
G1045A, A1058G, C1069T, G1076A, A1096G, G1117A, 
A1125C, G1128T, T1134C, G1164T, T1204C, C1255T, and 
C1262T. Among these SNPs, SNP G1045A, T1134C, and 
T1204C have been associated with the serum concentration 
of T3 and IGF-I and body condition [47,48], while the SNP 
A1125C was associated with calving percentages in cross-
bred Brahman cows [48]. The SNP G1076A identified by 
Prihandini et al [46] in Indonesian cattle breeds was also ob-
served in South African Nguni crossbred cattle [49]. Six SNPs 

in the HSP70 gene, including G1045A, G1117A, A1125C, 
G1128T, T1134C, and T1204C, have been identified in some 
cattle populations from different countries [46,50-52]. Of 
the six SNPs, SNP G1128T has been associated with cell via-
bility and gene expression of the HSP70.1 gene in Holstein 
cattle, in which heterozygous animals showed higher cell vi-
ability (p<0.05) and gene expression (p<0.001) compared to 
homozygous GG [50]. The SNP G1128T was also associated 
with calving percentages in crossbred Brahman cows [48]. 
Badri et al [53] found SNP G462T in the coding region of 
the HSP70 gene in Chinese Holstein cattle with an amino 
acid substitution at position 154 from glutamine to histidine, 
which may influence heat tolerance.

Heat shock protein 90 (HSP90)

Figure 1. Molecular mechanism for the expression of HSP70 within a cell, adapted from Kregel [40]. The HSP70 expression is modulated by some 
physiological signals like thermal stress, energy depletion, acidosis, and viral infection. These physiological stimuli activate the heat shock factors 
(HSFs), causing them to seperate from heat shock proteins (HSPs). The HSFs are phosphorylated by protein kinases and form trimers in the cyto-
sol. These HSF trimer complexes enter the nucleus and bind to heat shock elements (HSE) in the promotor region of the HSP70 gene. HSP70 
mRNA is then transcribed and leaves the nucleus for the cytosol, where new HSP70 is synthesized. Proposed mechanisms of cellular protection 
for HSPs include their functioning as molecular chaperones to assist in the assembly and translocation of newly synthesized proteins within the 
cell and the repair and refolding of damaged (e.g., stress-denatured) proteins. 
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HSP90 is a member of the HSPs family, which has an impor-
tant biological role in protein translocation and regulation of 
steroid hormone receptors [36]. The HSP90 is a versatile 
chaperone protein that maintains cellular integrity and ho-
meostasis during heat stress [39]. This protein is considered 
a highly conserved and essential stress protein expressed in 
all eukaryotic cells, comprising 1% to 2% of cellular proteins 
under non-stress conditions [54]. The HSP90 is the regula-
tor for nearly 100 proteins termed client proteins, involved 
in signal transduction [54]. Among the HSPs, HSP90 and 
HSP70 are the two important components of the cellular 
machinery involved in protein homeostasis and participate 
in nearly every cellular process. In some chaperone activities 
the two proteins work together in cellular remodeling func-
tions [55] and act as apoptosis modulators, by interfering 
with the formation of the apoptosome, thereby reducing cell 
death during heat shock [56].
 When the mammalian cells are exposed to external stress, 
a way to respond to such stress is by releasing some con-
served proteins, such as the HSPs family. Among the HSPs, 
the HSP90 expression has been associated with the freezing 
resistance of bull sperm. The higher expression of HSP90 leads 
to the higher motility and freezing resistance of sperm after 
freezing-thawing [57]. HSP90 expression in bull spermato-
zoa gradually declined following freezing-thawing process, 
thereby affecting sperm quality [58]. There are two major 
cytoplasmic isoforms of HSP90, including the inducible form 
(HSP90α or HSP90AA1) and the constitutive form (HSP90β 
or HSP90AB1), which are constituted by the duplication of 
genes [27,59]. HSP90AA1 and HSP90AB1 genes have been 
mapped to bovine chromosome 21 (with 733 amino acids) 
and 23 (with 724 amino acids), respectively. The HSP90 
isoforms contribute to cellular functions, including signal 
transduction, protein folding, protein degradation, cell sur-
vival, and morphological evolution [60]. 
 Certain polymorphisms in the HSP90 gene in various 
breeds of cattle throughout the world have been identified. 
Onasanya et al [18] identified four SNPs in the exon 3 of the 
HSP90 gene in four zebu breeds in Nigeria, i.e., Ambala, Red 
Bororo, Sokoto Gudali, and White Fulani. The identified SNPs 
were T116G, G220C, G346A, and G390A. Heterozygous 
animals showed significantly (p<0.0001) lower BT, RT, RR, 
and HTC than homozygous animals [18]. The HSP90AB1 
gene polymorphisms have also been detected by Charoensook 
et al [61] in indigenous Thai breed White Lamphun and 
Mountainas, as well as a crossbred Holstein Friesian. In their 
studied populations, a total of nine SNPs were observed, one 
in the 3’-UTR (g.5435T>C), three in exons 10 (g.4374T>G) 
and 11 (g. 5007T>C and 5082C>T), and five in introns 8 (g. 
4029G>C and 4061G>A), 9 (g.4338T>C), 10 (g.4730A>C), 
and 11 (g.5248C>T). The SNP g. 5082C>T in exon 11 results 
in an alanine-to-valine amino acid change. Furthermore, the 

T allele at SNP T4338C in intron 9 significantly improved heat 
tolerance (p<0.05) [61]. Interestingly, the SNP g.4338T>C 
has also been detected in Indian breeds of dairy cattle, Sahiwal 
and Frieswal, in which TT genotype had significantly (p< 
0.01) higher HTC than CT and CC genotypes [62]. 
 Genetic analysis of the HSP90AA1 gene in Karan Fries 
(5/8 Holstein Friesian × 3/8 Tharparkar) showed a point 
mutation, g.1209A>G in exon 3, which produced three gen-
otypes, i.e., AA, AG, and GG. Association analysis for the 
SNP g.1209A>G showed that homozygous GG had signifi-
cantly (p<0.01) lower RR, RT, and HTC than homozygous 
AA and heterozygous AG [27]. A total of five SNPs of the 
HSP90AA1 gene were detected in Chinese Holstein cows; 
one in the promoter (g.−87G>C), three in the coding (g.605A> 
G, 1662T>G, 2819G>A), and one in 3′-UTR (g.4172A>G) 
regions [63]. For the g.−87G>C locus, animals having CC 
genotype had significantly (p<0.01) higher HSP90AA1 mRNA 
expression than those having GG genotype in stress condi-
tions [63]. Thus, the SNPs detected in the HSP90 gene could 
be potential molecular markers for thermotolerance in cattle 
breeding.

Heat shock factor 1 (HSF1)
Heat shock factors (HSFs) are the main transcription factors 
that maintain protein homeostasis (proteostasis) and coun-
teract disturbances by regulating heat shock gene transcription 
[64]. The HSFs are activated in response to stress factors, such 
as rising temperature, while inactive in non-stressed cells 
[65]. The HSFs transiently activate the HSPs transcription by 
binding to their promoters [64]. The HSPs were first observed 
in Drosophila melanogaster in the early 1960s, as revealed by 
a “puffing” of genes in the chromosome of recovering cells 
[66]. The “puffing” has been shown to activate genes encod-
ing the HSPs, which function as molecular chaperones [67]. 
The HSF family consists of four members in mammals, in-
cluding HSF1, HSF2, HSF3, and HSF4. Among them, HSF1 
is the primary regulator of the heat shock gene transcription 
in response to stress conditions [68]. The HSF1 gene was 
mapped to bovine chromosome 14, and appears to be in-
volved in cardiac health, cell functions, stress responses, and 
DNA damage repair in mammals [19,69]. Animals with an 
abundance of the HSF1 gene expression have a great capacity 
to cope with heat stress compared to those with lower ex-
pression [70]. Consequently, the HSF1 expression can be 
used as indicator of thermotolerance in cattle.
 Although the importance of the HSF1 gene as a regulator 
of the heat shock responses, a few studies have been con-
ducted on identifying the HSF1 polymorphisms in cattle 
when compared to the HSPs family [19,71,72]. Sharma et 
al [73] characterized the 3’-UTR of the HSF1 gene in Indian 
cattle breeds, consisting of three SNPs (G1762T, C1811T, 
and C1983T), and binding sites for several miRNAs. They 
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also noted the abundance expression of most of the miRNAs 
after heat stress in peripheral blood mononuclear cells of 
the studied animals, which may affect the function of the 
HSF1 gene in response to heat stress. A total of twelve SNPs 
of the HSF1 gene were identified in Angus cattle raised in 
subtropical conditions [72]. Of the twelve, eight were in 
coding regions with no alteration in the amino acid sequence 
of the protein, and others were mapped to intron regions 
with uncharacterized function. Rong et al [19] identified 
SNP NC_037341.1 g.616087A>G (rs135258919) in the HSF1 
gene in 35 Chinese cattle breeds, which produced three 
genotypes, AA, AG, and GG. The SNP was associated with 
annual temperature (T), relative humidity (RH), and tem-
perature-humidity index (THI) (p<0.01). The mutant allele 
(G) of the SNP was highly detected in animals raised in re-
gions with more prominent heat stress, suggesting that 
animals carrying allele G (GG and AG genotypes) may be 
more tolerant to heat stress than those with allele A (AA 
genotype) [19]. The genetic polymorphisms of the HSF1 
gene were also studied in Chinese Holstein cattle, in which 
two SNPs (T909C in intron 3 and G4693T in 3′UTR) sig-
nificantly affected thermotolerance [71]. Based on these SNPs, 
nine haplotype combinations were constructed. Animals 
carrying H2H4 haplotype combination (TCTT) showed 
higher HTC (p<0.05) and lower potassium content in eryth-
rocytes (p<0.01), decreased rate of milk production (p<0.05), 
and RT (p<0.05) than those carrying H1H3 haplotype com-
bination (TCGG) [71]. Li et al [71] further noted that the 
4693-T mutation caused the disruption of microRNA tar-
get binding, resulting in the relief of the transcriptional 
repression that led to the increased HSF gene expression 
[71]. Furthermore, the SNP G4693T was noted to affect 
the HSF1 gene expression by influencing the binding of 
HSFI to bta-miR-484 [74]. Li et al [74] further observed 
another SNP G1451T, in intron 3 of the HSF1 gene. Still, 
this SNP was noted to have no effect on thermotolerance. 

Eukaryotic translation initiation factor 2-alpha kinase 
4 (EIF2AK4)
The alpha subunit of eukaryotic initiation factor -2 (eIF2α) 
is a molecule involved in regulating protein synthesis initia-
tion in eukaryotes [75]. The eIF2α is phosphorylated by 
protein kinases, activated in response to various stress con-
ditions; oxidative stress, heme deficiency, osmotic shock, and 
heat shock [76]. Eukaryotes have four types of eIF2α kinases, 
including PKR, HRI, PERK, and EIF2AK4 [20]. Among these, 
the EIF2AK4 gene represses the translation of most mRNAs in 
response to stress-induced signals [77]. The EIF2AK4 gene is 
also known as the general control non-derepressible 2 (GCN2) 
gene. This gene is activated in response to viral infection and 
oxidative stress [78,79]. The activation of the EIF2AK4 gene 
also occurs by binding uncharged transfer RNAs (tRNAs) to 

the HisRS domain of the protein [80].
 Heat exposure in mammals can cause oxidative stress and 
DNA damage resulting in apoptosis [81]. Edea et al [69] de-
tected candidate genes associated with thermo-tolerance 
and DNA damage repair, including HSPA4, HSF1, CMPK1, 
and EIF2AK4. The EIF2AK4 gene plays a central role in 
regulating gene expression in response to the deprivation 
of amino acids and glucose [82]. Moreover, the EIF2AK4 
gene was noted to activate and mediate cellular response to 
DNA damaging agents (e.g., UV), viral infections, and nu-
tritional deprivation [83]. A recent study by Wang et al [20] 
characterized the EIF2AK4 gene in 35 Chinese cattle breeds 
and two exotic breeds (Angus [Bos taurus] and Burma [Bos 
indicus]). The investigated Chinese cattle breeds were classified 
into southern cattle, which genetically belonged to indicine 
cattle, and northern cattle groups, which were genetically 
classified as taurine cattle. They noted a novel SNP, NC_037337.1 
g.35615224 T>G, located in exon 6 of the EIF2AK4 gene, 
responsible for a p.Ile205Ser substitution. The frequency of 
the wild-type allele T (NC_037337.1 g.35615224 T>G) grad-
ually increased from the southern cattle groups to the northern 
cattle groups, while the mutant allele G showed an opposite 
pattern. The SNP was also associated with thermotolerance 
in Chinese cattle, as revealed by the GG genotype, which 
was generally found in regions with higher AT, RH, and 
THI [20]. However, the mechanisms by which the EIF2AK4 
gene expression affects cattle thermotolerance must be further 
investigated. As noted by Jiang and Wek [84], the EIF2AK4 
gene was also associated with resistance to apoptosis due 
to UV irradiation. Loss of EIF2AK4 gene significantly in-
creases apoptosis during UV exposure. Furthermore, the 
EIF2AK4 gene plays a pivotal role in the integrated stress 
response (ISR) by regulating sensing starvation [85].

Heat shock factor binding protein 1 (HSBP1)
Heat shock factor binding protein 1 (HSBP1) is a novel and 
conserved protein containing 76 amino acids and two extend-
ed arrays of hydrophobic repeats [86]. The HSBP1 interacts 
with the oligomerization domain of the HSF1 to suppress 
HSF1's transcriptional activity in response to heat shock [86, 
87]. Besides, the HSBP1 also interacts with HSP70 at a later 
point in the heat shock response relative to the appearance 
of HSBP1/HSF1 complexes, inhibiting HSF’s capacity to bind 
DNA and conversion of the trimer to monomer state [86]. 
At 1.8 A resolution, the HSBP1 contained crystal structure 
and amino acid residues 6–53, forming a continuous 11-turn 
long helix [88]. The HSBP1 gene acts as a negative regulator 
of heat shock responses, thereby affecting the survival of 
animals when subjected to thermal stress [86]. In mice, al-
though the HSBP1 reduction in embryoid bodies (Ebs) leads 
to increased HSF1 activity, it causes defects in the organiza-
tion of the germ layers and a reduction in the expression of 



1642  www.animbiosci.org

Hariyono and Prihandini (2022) Anim Biosci 35:1635-1648

definitive endodermal markers [87]. In cattle, genetic poly-
morphisms of the HSBP1 gene were noted on 930 Chinese 
Holstein cattle [21]. Consequently, three SNPs (e.g., g.324G> 
C, g.589C>T, and g.651C>G) formed seven haplotypes and 
fourteen haplotype combinations. Among the fourteen, the 
H2H2 haplotype combination had a lower decrease rate of 
milk yield than the H2H3 haplotype combination (p<0.05). 
Also, lower potassium content in erythrocytes (PCE) was 
noted in H2H2 haplotype combination as compared to H2H5 
(p<0.05), H4H4 (p<0.05), and H4H5 (p<0.01) haplotype com-
binations. Moreover, it was noted that the SNP g.651C>G 
affected thermotolerance in the analyzed cattle; cows carrying 
GG genotype had lower PCE than CG genotype (p<0.01) [21]. 

Heat shock protein family B (small) member 8 
(HSPB8)
Heat shock protein family B (small) member 8 (HSPB8), also 
known as HSP22, H11 kinase, or E2IG, is a member of the 
small HSP family, which is expressed in response to heat 
shock [89,90]. The HSPB8 is present in the plasma mem-
brane and interacts with the lipid membrane to result in the 
burial of the tryptophan residues and observable conforma-
tional change, thereby interfering with cellular activities such 
as signal transduction and apoptosis [91]. HSPB8 tends to 
form small-molecular-mass oligomers and interacts with bi-
ological membranes and many different proteins, such as 
glycolytic enzymes and different protein kinases [92]. More-
over, this protein exists as a monomer in vitro and involves 
in chaperone-like activity as well [89]. The protein also acts 
as a positive regulator in the PGF2α-induced synthesis of 
interleukin-6 (IL-6) and vascular endothelial growth factor 
A (VEGF) in osteoblasts [93]. The HSPB8 gene has been 
mapped to bovine chromosome 17 (BTA17q24-25) [22]. In 
mammals, mutations in the gene encoding HSPB8 can lead 
to the development of various diseases such as myopathies 
and neuropathies [90]. The HSPB8 expression has also been 
associated with mitochondrial dysfunction that leads to 
subarachnoid hemorrhage (SAH)-induced early brain injury 
(EBI) [94]. Verma et al [22] analyzed 108 Sahiwal indigenous 
cattle in India to reveal SNPs within the HSPB8 gene and 
their association with thermotolerance. Two SNPs (e.g., 
g.507G>A in exon 1 and g.881T>C in intron 1) were noted, 
but only SNP g.507G>A significantly affected heat tolerance 
in the studied cattle. For g.507G>A locus, animals with GA 
genotype had significantly lower (p<0.01) RR, RT, and HTC 
than those with GG genotype. Therefore, the GA genotype 
of SNP g.507G>A of the HSPB8 gene may be advantageous 
in selecting heat-tolerant animals [22].

Heat shock protein family B (small) member 7 
(HSPB7)
The HSPB family is one of the most diverse families within 

the group of HSP families [95]. The HSPB7 is a member of 
the HSPB, which is preferentially expressed in cardiovascu-
lar, skeletal muscle, and adipose tissue [96]. In obese rats, the 
HSPB7 mRNA expression increases in skeletal muscle and 
brown and white adipose tissues [97]. The HSPB7 gene ap-
pears in oligomeric and dimeric forms (approximately 17 kDa 
and 40 kDa, respectively) composed of 18.6-kDa monomers 
[98]. Unlike HSPB1 and HSPB5, that chaperoned heat un-
folded substrates and kept them folding competent, HSPB7 
did not support refolding [95]. In cattle, the overexpression 
of HSPB7 improved the H2O2-induced oxidative stress in 
adipocytes via increasing the abundance of NFE2 like bZIP 
transciption factor 2 (NFE212) and its downstream target 
genes heme oxygenase-1 (HMOX1) and NADH quinone 
oxidoreductase 1 (NQO1). Knockdown of HSPB7 markedly 
inhibited the expression of NFE2L2, HMOX1, and NQO1 
and further exacerbated H2O2-induced oxidative stress [99]. 
In humans, HSPB7 knockdown promoted osteogenic differ-
entiation of human adipose-derived stem cells (hASCs) via 
activation of the ERK1/2 signaling pathway [100]. Zeng et al 
[23] explored 774 individuals representing 32 Chinese indig-
enous cattle breeds to detect the polymorphism in the HSPB7 
gene. Consequently, one SNP NC_037329.1: g.136054902 C>G 
was found, of which the allele C was dominant in northern 
cattle groups. In contrast, allele G was dominant in southern 
indicine cattle groups. The SNP was associated with AT, RH, 
and THI (p<0.01). Animals carrying the allele G had higher 
T, RH, and THI. Thus, SNP NC_037329.1: g.136054902 C>G 
might benefit heat-tolerant cattle breeding [23].

Myosin-1a (MYO1A)
Myosin-1a (MYO1A) gene is a candidate gene associated with 
skin pigmentation in cattle [69]. As reported previously, skin 
pigmentation is highly related to the BT regulation [101,102]. 
In the enterocyte microvillus, the MYO1A was considered 
the most abundant actin-based motor protein interacting 
with the apical membrane via a highly basic C-terminal tail 
domain [103]. The MYO1A belongs to one of eight mono-
meric, membrane-binding, and actin-based motor protein 
class I myosins, which are highly expressed in vertebrates 
[104]. It is also a mechanoenzyme previously thought to be 
located exclusively in the intestinal epithelium [105]. Fur-
thermore, MYO1A plays an important role in the apical 
membrane movement and structural stability [106] by power-
ing the sliding of the apical membrane along with microvillar 
actin bundles [107] and regulating membrane-cytoskeleton 
adhesion, which enables the apical membrane to resist de-
formation [108]. 
 In cattle, an association of the MYO1A gene polymorphisms 
with thermotolerance was first described by Jia et al [24] on 
1,072 animals from 34 Chinese indigenous cattle breeds, 
and Angus and Indian zebu. Their study found four SNPs 
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within the MYO1A gene, including rs208210464, rs110123931, 
rs209999142, and rs135771836. A missense mutation of 
rs209999142 resulted in an amino acid change from phe-
nylalanine to serine. All the identified SNPs were significantly 
associated with environmental parameters, including T, RH, 
THI, and SR. Besides, Hap 1/1 constructed based on the 
four SNPs was advantageous in selecting heat-tolerant animals 
[24]. Cao et al [109] reported a novel SNP (rs209559414 or 
NC_037332.1 g.56390345 A>G) within the MYO1A gene 
in Chinese indigenous cattle. This SNP was capable of re-
sulting in an amino acid substitution from isoleucine into 
valine. The frequency of wild allele A decreased gradually 
from northern cattle (a temperate monsoon climate) to 
southern cattle (a subtropical monsoon climate), while that 
of mutant type allele G showed the opposite pattern. A signifi-
cant association between genotypes for the SNP rs209559414 
and climatic conditions (AT, RH, THI, and average annual 
sunshine hours [100-cloudiness]) was noted [109].

ATPase Na+/K+ transporting subunit alpha 1 
(ATP1A1)
ATP1A1 gene is a well-known gene involved in regulating 
BT during heat stress in cattle [25,110-112]. The ATP1A1 
gene has been mapped to bovine chromosome 3, consisting 
of 22 introns and 23 exons [113]. This gene encoded the alpha-1 
chain of Na+/K+-ATPase, an integral membrane protein of a 
heterodimeric enzyme, which mediates cutaneous vasodila-
tion during heat stress by interacting with nitric oxide synthase 
(NOS) [114,115]. This protein also has an important role in 
membrane permeability by coupling the transport of three 
Na+ ions outward and two K+ ions inward [116]. The Na+/K+-
ATPase consists of four isoforms of an α subunit (α1–α4), 
three isoforms of a β subunit (β1–β3), and FXYD proteins 
[117]. The four α ATPases include ATP1A1, ATP1A2, ATP1A3, 
and ATP1A4, encoding for α1, α2, α3, and α4 protein sub-
units, respectively [118]. Among the α ATPases, the ATP1A1 
was highly expressed in erythrocytes and peripheral nerves 
[115]. It has been reported that the ATP1A1 mRNA expres-
sion of dairy cows under heat stress was higher than those 
under optimal temperature [110]. 
 Numerous research has been undertaken on various breeds 
of cattle to determine the association between ATP1A1 gene 
polymorphisms and thermotolerance. Liu et al [25] observed 
two SNPs, -14103G>A in exon 14 and -14242C>T in intron 
14 of the ATP1A1 gene in Holstein cows, which were signifi-
cantly associated with HTC and RR (p<0.01). Animals with 
AC genotype were the most tolerant coping with heat stress. 
A year later, Liu et al [110] discovered a novel synonymous 
mutation (C2789A) in exon 17 of the ATP1A1 mRNA in 
Holstein dairy cows, significantly associated with heat resis-
tance. Due to this SNP, cows carrying the CC genotype showed 
significantly higher heat tolerance than those carrying the 

CA genotype (p<0.05) [110]. This SNP was also identified in 
Vrindavani and Tharparkar cattle of India using polymerase 
chain reaction single-strand conformation polymorphism 
and DNA sequencing and associated with heat resistance. 
Association analysis for this SNP showed that animals with 
genotype CC showed higher HTC and lower RT than CA 
and AA genotypes in both breeds [112]. Furthermore, the 
TT genotype at T27008243C locus in Sahiwal and the AA 
genotype at 27008223 locus in Karan Fries cows were the 
most favorable genotypes for heat tolerance [111]. In Cho-
listani cattle, genetic variant (BB) of the ATP1A1 gene was 
found to have significant (p<0.05) effect on vaginal tempera-
ture [119]. The polymorphism of the ATP1A1 gene has also 
been associated with productive traits like feed intake in Eu-
ropean beef cattle breeds [120]. 

CONCLUSION AND FUTURE 
PERSPECTIVES

There is a significant association of SNPs in HSP70, HSP90, 
HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1 
genes with thermotolerance in various breeds of cattle (both 
dairy and beef cattle), implying their potential uses as mo-
lecular markers in breeding schemes. These molecular markers 
may benefit both management and breeding decisions to se-
lect thermal-tolerant cattle. Since thermal stress is a critical 
issue in cattle production, mainly due to its deleterious impact 
on feed intake, milk yield, growth rate, and reproductive effi-
ciency, knowledge of these candidate genes regulating thermal 
stress can be valuable in providing MAS in cattle breeding. 
Identification of SNPs in stress-related genes has been proved 
to generate beneficial molecular data in farm animals. It has 
been proposed that genomic selection is a promising approach 
to accelerate genetic gain for thermotolerance because young 
bulls and heifers can be selected based on their genomic es-
timated breeding value (GEBV) [32,121]. The higher the 
young bulls genotyped, the smaller the marginal cost of the 
additional GEBV is. However, the main challenge in devel-
oping a GEBV is the size of the reference population [122]. 
The accuracy of genomic prediction increases in line with 
the increased size of the reference population. In dairy cattle, 
genomic predictions for heat thermotolerance have been 
conducted using reference populations from Holstein and 
Jersey cattle genotyped for 632,003 SNPs with an accuracy 
of 0.39 to 0.57 in Holsteins, and 0.44 to 0.61 in Jerseys [32]. 
This suggests that genomic selection is an excellent alternative 
to improve thermotolerance in cattle. Furthermore, emerging 
technologies in molecular genetic techniques and genome 
editing, such as clustered regularly interspaced short palin-
dromic repeat (CRISPR)/CRISPR-associated endonuclease 
Cas9 (Cas9), may pave the way for novel approaches, allow-
ing introduction of site-specific gene modifications. Finally, 
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incorporating molecular information into breeding programs 
will benefit industry, scientists, and breeders to develop thermo-
tolerant cattle and improve the accuracy of traditional selection 
methods. 
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