DOI QR코드

DOI QR Code

Hypoxia-Inducible Factor-1 Alpha Stabilization in Human Macrophages during Leishmania major Infection Is Impaired by Parasite Virulence

  • Ben-Cheikh, Ali (Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII)) ;
  • Bali, Aymen (Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII)) ;
  • Guerfali, Fatma Z (Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII)) ;
  • Atri, Chiraz (Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII)) ;
  • Attia, Hanene (Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII)) ;
  • Laouini, Dhafer (Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII))
  • Received : 2022.05.08
  • Accepted : 2022.06.27
  • Published : 2022.10.31

Abstract

Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the master regulators of immune and metabolic cellular functions. HIF-1α, a transcriptional factor whose activity is closely related to oxygen levels, is a target for understanding infectious disease control. Several studies have demonstrated that HIF-1α plays an important role during the infectious process, while its role in relation to parasite virulence has not been addressed. In this work, we studied the expression levels of HIF-1α and related angiogenic vascular endothelial growth factor A (VEGF-A) in human macrophages infected with promastigotes of hypo- or hyper-virulent Leishmania major human isolates. L. major parasites readily subverted host macrophage functions for their survival and induced local oxygen consumption at the site of infection. In contrast to hypo-virulent parasites that induce high HIF-1α expression levels, hyper-virulent L. major reduced HIF-1α expression in macrophages under normoxic or hypoxic conditions, and consequently impeded the expression of VEGF-A mRNA. HIF-1α may play a key role during control of disease chronicity, severity, or outcome.

Keywords

Acknowledgement

This work was supported by the Tunisian Ministry of Higher Education and Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank the Animal Facilities of the Institut Pasteur de Tunis for their help conducting this study.

References

  1. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7: e35671. https://doi.org/10.1371/journal.pone.0035671
  2. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Arenas. Leishmaniasis: a review. F1000Res 2017; 6: 750. https://doi.org/10.12688/f1000research.11120.1
  3. Aoun K, Bouratbine A. Cutaneous leishmaniasis in North Africa: a review. Parasite 2014; 21: 14. https://doi.org/10.1051/parasite/2014014
  4. Remadi L, Haouas N, Chaara D, Slama D, Chargui N, Dabghi R, Jbeniani H, Mezhoud H, Babba H. Clinical presentation of cutaneous leishmaniasis caused by Leishmania major. Dermatology 2016; 232: 752-759. https://doi.org/10.1159/000456543
  5. Attia H, Sghaier MR, Bali A, Guerfali FZ, Chlif S, Atri C, BelhajHamida N, Zaatour A, Gharbi A, Ben-Salah A, Dellagi K, Laouini D. Intra-specific diversity of Leishmania major isolates: a key determinant of Tunisian zoonotic cutaneous leishmaniasis clinical polymorphism. Microorganisms 2022; 10: 505. https://doi.org/10.3390/microorganisms10030505
  6. Kebaier C, Louzir H, Chenik M, Ben Salah A, Dellagi K. Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infect Immun 2001; 69: 4906-4915. https://doi.org/10.1128/IAI.69.8.4906-4915.2001
  7. Ulusan O, Mert U, Sadiqova A, Ozturk S, Caner A. Identification of gene expression profiles in Leishmania major infection by integrated bioinformatics analyses. Acta Trop 2020; 208: 105517. https://doi.org/10.1016/j.actatropica.2020.105517
  8. Kalavi K, Jorjani O, Faghihi MA, Mowla SJ. Cytokine gene expression alterations in human macrophages infected by Leishmania major. Cell J 2021; 22: 476-481. https://doi.org/10.22074/cellj.2021.6524
  9. Dogra N, Warburton C, McMaster WR. Leishmania major abrogates gamma interferon-induced gene expression in human macrophages from a global perspective. Infect Immun 2007; 75: 3506-3515. https://doi.org/10.1128/IAI.00277-07
  10. Guerfali FZ, Laouini D, Guizani-Tabbane L, Ottones F, Ben-Aissa K, Benkahla A, Manchon L, Piquemal D, Smandi S, Mghirbi O, Commes T, Marti J, Dellagi K. Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE. BMC Genomics 2008; 9: 238. https://doi.org/10.1186/1471-2164-9-238
  11. Lemaire J, Mkannez G, Guerfali FZ, Gustin C, Attia H, Sghaier RM; Sysco-Consortium, Dellagi K, Laouini D, Renard P. MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis 2013; 7: e2478. https://doi.org/10.1371/journal.pntd.0002478
  12. Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation 2012; 19: 215-223. https://doi.org/10.1111/j.1549-8719.2011.00154.x
  13. Weidemann A, Johnson RS. Biology of HIF-1α. Cell Death Differ 2008; 15: 621-627. https://doi.org/10.1038/cdd.2008.12
  14. Santos SAD, Andrade DR Jr. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo 2017; 59: e92. https://doi.org/10.1590/S1678-9946201759092
  15. Degrossoli A, Bosetto MC, Lima CB, Giorgio S. Expression of hypoxia-inducible factor 1α in mononuclear phagocytes infected with Leishmania amazonensis. Immunol Lett 2007; 114: 119-125. https://doi.org/10.1016/j.imlet.2007.09.009
  16. Guerfali FZ, Lemaire J, Mkannez G, Renard P, Laouini D. Letter to the Editor: Hypoxia inducible factor 1α: a critical factor for the immune response to pathogens and Leishmania. Cell Immunol 2016; 310: 211. https://doi.org/10.1016/j.cellimm.2016.08.009
  17. Alonso D, Serrano E, Bermejo FJ, Corral RS. HIF-1α -regulated MIF activation and Nox2-dependent ROS generation promote Leishmania amazonensis killing by macrophages under hypoxia. Cell Immunol 2019; 335: 15-21. https://doi.org/10.1016/j.cellimm.2018.10.007
  18. Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, hypoxia-inducible factor-1α, and innate antileishmanial immune responses. Front Immunol 2018; 9: 216. https://doi.org/10.3389/fimmu.2018.00216
  19. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Estaquier. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016; 9: 118. https://doi.org/10.1186/s13071-016-1412-x
  20. Mesquita I, Ferreira C, Moreira D, Kluck GEG, Barbosa AM, Torrado E, Dinis-Oliveira RJ, Goncalves LG, Beauparlant CJ, Droit A, Berod L, Sparwasser T, Bodhale N, Saha B, Rodrigues F, Cunha C, Carvalho A, Castro AG, Estaquier J, Silvestre R. The absence of HIF-1α increases susceptibility to Leishmania donovani infection via activation of BNIP3/mTOR/SREBP-1c axis. Cell Rep 2020; 30: 4052-4064. https://doi.org/10.1016/j.celrep.2020.02.098
  21. Mahnke A, Meier RJ, Schatz V, Hofmann J, Castiglione K, Schleicher U, Wolfbeis OS, Bogdan C, Jantsch J. Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. J Invest Dermatol 2014; 134: 2339-2346. https://doi.org/10.1038/jid.2014.121
  22. Jantsch J, Schodel J. Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology 2015; 220: 305-314. https://doi.org/10.1016/j.imbio.2014.09.009
  23. Weinkopff T, Roys H, Bowlin A, Scott P. Leishmania infection induces macrophage vascular endothelial growth factor a production in an ARNT/HIF-dependent manner. Infect Immun 2019; 87: e00088-19. https://doi.org/10.1128/IAI.00088-19
  24. Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 2009; 9: 609-617. https://doi.org/10.1038/nri2607
  25. Kumar R, Bumb RA, Salotra P. Evaluation of localized and systemic immune responses in cutaneous leishmaniasis caused by Leishmania tropica: interleukin-8, monocyte chemotactic protein-1 and nitric oxide are major regulatory factors. Immunology 2010; 130: 193-201. https://doi.org/10.1111/j.1365-2567.2009.03223.x
  26. Araujo AP, Giorgio S. Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis. Arch Dermatol Res 2015; 307: 671-682. https://doi.org/10.1007/s00403-015-1564-0
  27. Gioseffi A, Hamerly T, Van K, Zhang N, Dinglasan RR, Yates PA, Kima PE. Leishmania-infected macrophages release extracellular vesicles that can promote lesion development. Life Sci Alliance 2020; 3: e202000742. https://doi.org/10.26508/lsa.202000742
  28. Ghouila A, Guerfali FZ, Atri C, Bali A, Attia H, Sghaier RM, Mkannez G, Dickens NJ, Laouini D. Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. Infect Genet Evol 2017; 50: 110-120. https://doi.org/10.1016/j.meegid.2016.10.029
  29. Colhone MC, Arrais-Silva WW, Picoli C, Giorgio S. Effect of hypoxia on macrophage infection by Leishmania amazonensis. J Parasitol 2004; 90: 510-515. https://doi.org/10.1645/GE-3286
  30. Bowlin A, Roys H, Wanjala H, Bettadapura M, Venugopal G, Surma J, Simon MC, Weinkopff T. Hypoxia-inducible factor signaling in macrophages promotes lymphangiogenesis in Leishmania major infection. Infect Immun 2021; 89: e0012421. https://doi.org/10.1128/IAI.00124-21
  31. Li F, Luo J, Xu H, Wang Y, Jiang W, Chang K, Deng S, Chen M. Early secreted antigenic target 6-kDa from Mycobacterium tuberculosis enhanced the protective innate immunity of macrophages partially via HIF1α. Biochem Biophys Res Commun 2020; 522: 26-32. https://doi.org/10.1016/j.bbrc.2019.11.045
  32. Holden VI, Breen P, Houle S, Dozois CM, Bachman MA. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during Pneumonia. mBio 2016; 7: e01397-16. https://doi.org/10.1128/mBio.01397-16
  33. Schatz V, Strussmann Y, Mahnke A, Schley G, Waldner M, Ritter U, Wild J, Willam C, Dehne N, Brune B, McNiff JM, Colegio OR, Bogdan C, Jantsch J. Myeloid cell-derived HIF-1α promotes control of Leishmania major. J Immunol 2016; 197: 4034-4041. https://doi.org/10.4049/jimmunol.1601080
  34. Bettadapura M, Roys H, Bowlin A, Venugopal G, Washam CL, Fry L, Murdock S, Wanjala H, Byrum SD, Weinkopff T. HIF-1α activation impacts macrophage function during murine Leishmania major infection. Pathogens 2021; 10: 1584. https://doi. org/10.3390/pathogens10121584
  35. Hammami A, Charpentier T, Smans M, Stager S. IRF-5-Mediated Inflammation Limits CD8+ T Cell Expansion by Inducing HIF1α and Impairing Dendritic Cell Functions during Leishmania infection. PLoS Pathog 2015; 11: e1004938. https://doi.org/10.1371/journal.ppat.1004938
  36. Degrossoli A, Arrais-Silva WW, Colhone MC, Gadelha FR, Joazeiro PP, Giorgio S. The influence of low oxygen on macrophage response to Leishmania infection. Scand J Immunol 2011; 74: 165-175. https://doi.org/10.1111/j.1365-3083.2011.02566.x