DOI QR코드

DOI QR Code

Evaluations of Thermal Diffusivity and Electrochemical Properties for Lithium Hydride and Electrolyte Composites

리튬계 수소화물 전해질 복합막의 열확산 및 전기화학적 특성평가

  • Hwang, June-Hyeon (Department of Energy Materials Science & Engineering, Korea National University of Transportation) ;
  • Hong, Tae-Whan (Department of Energy Materials Science & Engineering, Korea National University of Transportation)
  • 황준현 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • Received : 2022.08.23
  • Accepted : 2022.10.07
  • Published : 2022.10.27

Abstract

There is ongoing research to develop lithium ion batteries as sustainable energy sources. Because of safety problems, solid state batteries, where electrolytes are replaced with solids, are attracting attention. Sulfide electrolytes, with a high ion conductivity of 10-3 S/cm or more, have the highest potential performance, but the price of the main materials is high. This study investigated lithium hydride materials, which offer economic advantages and low density. To analyze the change in ion conductivity in polymer electrolyte composites, PVDF, a representative polymer substance was used at a certain mass ratio. XRD, SEM, and BET were performed for metallurgical analyses of the materials, and ion conductivity was calculated through the EIS method. In addition, thermal conductivity was measured to analyze thermal stability, which is a major parameter of lithium ion batteries. As a result, the ion conductivity of LiH was found to be 10-6 S/cm, and the ion conductivity further decreased as the PVDF ratio increased when the composite was formed.

Keywords

Acknowledgement

This research was supported by grant of the National Research Foundation funded by the Ministry of Science and ICT (Grant No. 2019R1F1A1041405) and Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047)

References

  1. Y. Ding, Z. P. Cano, A. Yu, J. Lu and Z. Chen, Electrochem. Energy Rev., 2, 1 (2019).
  2. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, J. Power Sources., 226, 272 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
  3. G. Y. Gor, J. Cannarella, C. Z. Leng, A. Vishnyakov and C. B. Arnold, J. Power Sources., 294, 167 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.028
  4. J. M. Kim, J. M. Oh, J. Y. Kim, Y. G. Lee and G. M. Kim (in Korean), J. Korean Electrochem. Soc., 22, 87 (2019).
  5. Y. Zhang, M. X. Xie, W. Zhang, J. L. Yan and G. Q. Shao, Mater. Lett., 266, 127508 (2020). https://doi.org/10.1016/j.matlet.2020.127508
  6. M. Motoaki, Y. Nakamori and S. Orimo, Appl. Phys. Lett., 22, 224103 (2007).
  7. R. Mohtadi, Chem, 4, 1770 (2018). https://doi.org/10.1016/j.chempr.2018.07.015
  8. A. H. Dao, D. Lopez-Aranguren, J. Zhang, F. Cuevas and M. Latroche, Materials, 13, 4028 (2020). https://doi.org/10.3390/ma13184028
  9. Y. Kojima, S. Hino, K. Tange and T. Ichikawa, MRS Online Proc. Libr., 1042, 601 (2007).
  10. Y. Wu, Y. Li, Y. Wang, Q. Chen and M. Chen, J. Energy Chem., 64, 62 (2021).
  11. B. Shabani and M. Biju, Energies, 8, 10153 (2015). https://doi.org/10.3390/en80910153
  12. A. Manthiram, X. Yu, and S. Wang, Nat. Rev. Mater., 2, 1 (2017).
  13. S. H. Park and Y. S. Lee (in Korean), The Magazine of the IEIE, 34, 1374 (2007).
  14. C. Maupoix, J. L. Houzelot, E. Sciora, G. Gaillard, S. Charton and L. Saviot, Powder Technol., 208, 318 (2011). https://doi.org/10.1016/j.powtec.2010.08.023
  15. E. Garlea, M. O. King, E. C. Galloway, T. L. Boy d, N. R. Smyrl, H. Z. Bilheux, L. J. Santodonato, J. S. Morrell and J. H. Leckey, J. Nucl. Mater., 485, 147 (2017). https://doi.org/10.1016/j.jnucmat.2016.12.012
  16. M. Ebrahiminia, J. B. Hooper, and D. Bedrov, Crystals, 8, 1 (2018).
  17. B. Han, Z. Zhang, Y. Zou, K. Xu, G. Xu, H. Wang, H. Meng, Y. Deng and M. Gu, Adv. Mater. (Weinheim, Ger.), 33, 2100404 (2021). https://doi.org/10.1002/adma.202100404
  18. D. Hou, H. Fan, Q. Jiang, J. Wang and X. Zhang, Sep. Purif. Technol., 135, 211 (2014). https://doi.org/10.1016/j.seppur.2014.08.023
  19. Y. H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe and J. Sakamoto, J. Mater. Sci., 47, 5970 (2012). https://doi.org/10.1007/s10853-012-6500-5
  20. S. Yu, S. Schmohi, Z. Liu, M. Hoffmeyer, N. Schon, F. Hausen, H. Tempel, H. Kungi, H. D. Wiemhofer and R. A. Eichel, J. Mater. Chem. A, 7, 3882 (2019). https://doi.org/10.1039/C8TA11259B
  21. N. S. Mohamed and A. K. Arof, J. Power Sources, 132, 229 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.031
  22. W. Yang, S. Sokhansanj, J. Tang and P. Winter, Biosyst. Eng., 82, 169 (2002).
  23. W. D. Callister, Fundamentals of Materials Science and Engineering: An Integrated Approach. 2nd ed., p. 254, John Wiley & Sons, Inc., Hoboken, New Jersey (2005).
  24. R. Bock, M. Onsrud, H. Karoliussen, B. G. Pollet, F. Seland and O. S Burheim, Energies, 13, 253 (2020). https://doi.org/10.3390/en13010253