DOI QR코드

DOI QR Code

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications

고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향

  • Choi, Chanhee (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Hwang, Seansoo (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 최찬희 (경상국립대학교 나노신소재융합공학과) ;
  • 황선수 (경상국립대학교 나노신소재융합공학과) ;
  • 김기현 (경상국립대학교 나노신소재융합공학과)
  • Received : 2022.10.20
  • Accepted : 2022.10.25
  • Published : 2022.10.31

Abstract

An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

이산화탄소 배출이 없는 고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 수송용, 발전용 시스템에 적용 가능한 친환경 에너지 변환장치이다. PEMFC의 주요 구성품 중 하나인 고분자 전해질 막(polymer electrolyte membrane, PEM)은 구동시간 동안의 높은 수소 이온 전도도와 물리화학적 안정성 갖춘 과불소화계 고분자(perfluorinated sulfonic acid, PFSA) 기반 PEM (PFSA-PEM)이 상용화 되어있다. 하지만 PFSA-PEM의 단점으로 지적되는 낮은 유리전이온도와 높은 기체 투과도의 보완이 요구되고 있다. 이에 본 총설에서는 PFSA-PEM의 성능 향상 및 단점 보완을 위해 1) PFSA의 측쇄부 길이를 조절함으로써 이온교환용량의 증가와 고분자의 결정성을 증가시켜 PFSA-PEM의 능력을 향상시킨 연구와 2) 유/무기 첨가제를 도입하여 수소 이온 전도도 및 물리적 안정성을 향상시키는 복합 막 연구 및 3) 다공성 지지체를 도입하여 PEM의 두께를 효과적으로 감소시켜 막 저항을 효과적으로 줄이고 내구성을 큰 폭으로 개선한 다공-충진막에 관한 연구를 소개하고자 한다.

Keywords

Acknowledgement

이 연구는 2022년도 정부의 재원으로 한국연구재단사업 (NRF-2019M3E6A1064797, NRF-2019R1F1A1060550, NRF-2020R1A6A1A03038697, NRF-2022R1F1A1072548) 및 산업통산자원부 소재부품기술개발사업 (20007143)의 지원을 받아 수행되었습니다.

References

  1. V. UNFCCC, "Adoption of the Paris agreement", Proposal by the President, 282, 2 (2015).
  2. B. Freedman, G. Stinson, and P. Lacoul, "Carbon credits and the conservation of natural areas", Environ. Rev., 17, 1 (2009). https://doi.org/10.1139/A08-007
  3. Jae-Joon Lee and Choi seok hwan, "A study on the development of the planning indicator for carbon neutral on the district unit plan", J. Korea Plan. Assoc., 44, 119 (2009).
  4. H.-W. Rhee, M.-K. Song, Y.-T. Kim, K.-H. Kim, "High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same", US Patent 7,977,008, July 12 (2011).
  5. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A.-G. Olabi, "Advances in stationary and portable fuel cell applications", Int. J. Hydrog. Energy, 41, 16509 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.057
  6. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, 35, 9349 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
  7. W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energy, 113, 620 (2017). https://doi.org/10.1016/j.renene.2017.06.027
  8. M. W. Tsang and S. Holdcroft, "Alternative proton exchange membranes by chain-growth polymerization.", Green Energy Environ., 10, 651 (2012).
  9. M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications", Polymers, 13, 3520 (2021). https://doi.org/10.3390/polym13203520
  10. P. Heo, M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Self-humidifying membrane for high-performance fuel cells operating at harsh conditions: Heterojunction of proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites", Membranes, 11, 776 (2021). https://doi.org/10.3390/membranes11100776
  11. Hansol Ko, Mijeong Kim, Sang Yong Nam, and Kihyun Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.395
  12. M. R. Molavian, A. Abdolmaleki, and K. Eskandari, "Theoretical investigation of proton-transfer in different membranes for PEMFC applications in low humidity conditions", Comput. Mater. Sci., 122, 126 (2016). https://doi.org/10.1016/j.commatsci.2016.05.003
  13. C. Wang, Z. Feng, Y. Zhao, X. Li, W. Li, X. Xie, S. Wang, and H. Hou, "Preparation and properties of ion exchange membranes for PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes", Int. J. Hydrog. Energy, 42, 29988 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.168
  14. A. Kusoglu and A. Z. Weber, "New insights into perfluorinated sulfonic-acid ionomers", Chem. Rev., 117, 987 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
  15. J. Li, M. Pan, and H. Tang, "Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells", RSC Adv., 4, 3944 (2014). https://doi.org/10.1039/C3RA43735C
  16. J. A. Elliott and S. J. Paddison, "Modelling of morphology and proton transport in PFSA membranes", Phys. Chem. Chem. Phys., 9, 2602 (2007). https://doi.org/10.1039/b701234a
  17. B. Torok, I. Kiricsi, A. Molnar, and G. A. Olah, "Acidity and catalytic activity of a Nafion-H/silica nanocomposite catalyst compared with a silicasupported Nafion sample", J. Catal., 193, 132 (2000). https://doi.org/10.1006/jcat.2000.2869
  18. M. Gross, G. Maier, T. Fuller, S. MacKinnon, and C. Gittleman, "Design rules for the improvement of the performance of hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)", Handbook of Fuel Cells, John Wiley & Sons, New York (2010).
  19. V. Mehta and J. S. Cooper, "Review and analysis of PEM fuel cell design and manufacturing", J. Power Sources, 114, 32 (2003). https://doi.org/10.1016/S0378-7753(02)00542-6
  20. H. A. Gasteiger and M. F. Mathias, "Fundamental research and development challenges in polymer electrolyte fuel cell technology", ECS Trans., 2002, 1 (2002).
  21. M. R. Tant, K. P. Darst, K. D. Lee, and C. W. Martin, "Structure and properties of short-side-chain perfluorosulfonate ionomers", ACS Symp. Ser. Am. Chem. Soc., 395, 370 (1989).
  22. K.-H. Kim, P. Heo, S.-W. Choi, C. Pak, H. Chang, S.-K. Kim, K.-H. Kim, T. Ko, and J.-C. Lee, "Synthesis of cross-linked membranes for high temperature polymer electrolyte membrane fuel cells (PEMFC)", J. Am. Chem. Soc., 243, 1155 (2012).
  23. D. Cha, S. W. Jeon, W. Yang, D. Kim, and Y. Kim, "Comparative performance evaluation of selfhumidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions", Energy, 150, 320 (2018). https://doi.org/10.1016/j.energy.2018.02.133
  24. Y. Garsany, R. W. Atkinson, M. B. Sassin, R. M. Hjelm, B. D. Gould, and K. E. Swider-Lyons, "Improving PEMFC performance using short-sidechain low-equivalent-weight PFSA ionomer in the cathode catalyst layer", J. Electrochem. Soc., 165, F381 (2018). https://doi.org/10.1149/2.1361805jes
  25. A. Ghielmi, P. Vaccarono, C. Troglia, and V. Arcella, "Proton exchange membranes based on the short-side-chain perfluorinated ionomer", J. Power Sources, 145, 108 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.068
  26. E. Y. Safronova, A. Osipov, and A. Yaroslavtsev, "Short side chain Aquivion perfluorinated sulfonated proton-conductive membranes: Transport and mechanical properties", Pet. Chem., 58, 130 (2018). https://doi.org/10.1134/S0965544118020044
  27. R. B. Moore III and C. R. Martin, "Morphology and chemical properties of the Dow perfluorosulfonate ionomers", Macromolecules, 22, 3594 (1989). https://doi.org/10.1021/ma00199a016
  28. M. Tant, K. Lee, K. Darst, and C. Martin, "Effect of side-chain length on the properties of perfluorocarbon ionomers", Polym. Mater. Sci. Eng, 58, 1074 (1988).
  29. A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A. Arico, L. Merlo, C. Oldani, and E. Pagano, "Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation", J. Power Sources, 196, 8925 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.084
  30. N. J. Economou, J. R. O'Dea, T. B. McConnaughy, and S. K. Buratto, "Morphological differences in short side chain and long side chain perfluorosulfonic acid proton exchange membranes at low and high water contents", RSC Adv., 3, 19525 (2013). https://doi.org/10.1039/c3ra41976b
  31. X. Luo, S. Holdcroft, A. Mani, Y. Zhang, and Z. Shi, "Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network", Phys. Chem. Chem. Phys., 13, 18055 (2011). https://doi.org/10.1039/c1cp22559f
  32. K. Talukdar, P. Gazdzicki, and K. A. Friedrich, "Comparative investigation into the performance and durability of long and short side chain ionomers in polymer electrolyte membrane fuel cells", J. Power Sources, 439, 227078 (2019). https://doi.org/10.1016/j.jpowsour.2019.227078
  33. F. Shang, L. Li, Y. Zhang, and H. Li, "PWA/silica/PFSA composite membrane for direct methanol fuel cells", J. Mater. Sci., 44, 4383 (2009). https://doi.org/10.1007/s10853-009-3658-6
  34. C. Wang, Z. Liu, Z. Mao, J. Xu, and K. Ge, "Preparation and evaluation of a novel self-humidifying Pt/PFSA composite membrane for PEM fuel cell", J. Chem. Eng., 112, 87 (2005). https://doi.org/10.1016/j.cej.2005.07.002
  35. G. Alberti and M. Casciola, "Composite membranes for medium-temperature PEM fuel cells", Annu. Rev. Mater. Res., 33, 129 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.154702
  36. A. R. Kim, M. Vinothkannan, M. H. Song, J.-Y. Lee, H.-K. Lee, and D. J. Yoo, "Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly (ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity", Compos. B. Eng., 188, 107890 (2020). https://doi.org/10.1016/j.compositesb.2020.107890
  37. E. Abouzari-Lotf, M. Etesami, and M. M. Nasef, "Canbon-based nanocomposite proton exchange membrane for fuel cell", p. 437, Carbon-Based Polymer Nanocomposites for Environ-mental and Energy Applications, Elsevier, Amsterdam (2018).
  38. A. K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon, S. Lee, and H. Kim, "Sulfonated graphene- nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity", J. Phys. Chem. C, 120, 15855 (2016). https://doi.org/10.1021/acs.jpcc.5b11674
  39. C. Yin, B. Xiong, Q. Liu, J. Li, L. Qian, Y. Zhou, and C. He, "Lateral-aligned sulfonated carbonnanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties", J. Membr. Sci., 591, 117356 (2019). https://doi.org/10.1016/j.memsci.2019.117356
  40. N. Cele, S. Sinha Ray, S. K. Pillai, M. Ndwandwe, S. Nonjola, L. Sikhwivhilu, and M. K. Mathe, "Carbon nanotubes based nafion composite membranes for fuel cell applications", Fuel Cells, 10, 64 (2010).
  41. M.-Y. Lim, J. Oh, H. J. Kim, K. Y. Kim, S.-S. Lee, and J.-C. Lee, "Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites", Eur. Polym. J., 69, 156 (2015). https://doi.org/10.1016/j.eurpolymj.2015.06.009
  42. M. Taufiq Musa, N. Shaari, and S. K. Kamarudin, "Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview", Int. J. Energy Res., 45, 1309 (2021). https://doi.org/10.1002/er.5874
  43. J. Wang, C. Gong, S. Wen, H. Liu, C. Qin, C. Xiong, and L. Dong, "A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan", Int. J. Hydrog. Energy, 44, 6909 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.194
  44. J. K. Holt, A. Noy, T. Huser, D. Eaglesham, and O. Bakajin, "Fabrication of a carbon nanotubeembedded silicon nitride membrane for studies of nanometer-scale mass transport", Nano Lett., 4, 2245 (2004). https://doi.org/10.1021/nl048876h
  45. T. Altalhi, M. Ginic-Markovic, N. Han, S. Clarke, and D. Losic, "Synthesis of carbon nanotube (CNT) composite membranes", Membranes, 1, 37 (2010). https://doi.org/10.3390/membranes1010037
  46. R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., 47, 2653 (2008). https://doi.org/10.1002/anie.200704343
  47. Y.-L. Liu, Y.-H. Su, C.-M. Chang, D.-M. Wang, and J.-Y. Lai, "Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells", J. Mater. Chem., 20, 4409 (2010). https://doi.org/10.1039/c000099j
  48. N. Shaari and S. K. Kamarudin, "Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview", Int. J. Energy Res., 43, 2756 (2019). https://doi.org/10.1002/er.4348
  49. P. Molla-Abbasi, K. Janghorban, and M. S. Asgari, "A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications", Iran. Polym. J., 27, 77 (2018). https://doi.org/10.1007/s13726-017-0587-0
  50. P. Dimitrova, K. Friedrich, U. Stimming, and B. Vogt, "Modified Nafion®-based membranes for use in direct methanol fuel cells", Solid State Ion., 150, 115 (2002). https://doi.org/10.1016/S0167-2738(02)00267-9
  51. Y. Devrim, H. Devrim, and I. Eroglu, "Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells", Int. J. Hydrog. Energy, 41, 10044 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.043
  52. H. Lade, V. Kumar, G. Arthanareeswaran, and A. Ismail, "Sulfonated poly (arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review", Int. J. Hydrog. Energy, 42, 1063 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.038
  53. I. S. Amiinu, W. Li, G. Wang, Z. Tu, H. Tang, M. Pan, and H. Zhang, "Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes", Electrochim. Acta, 160, 185 (2015). https://doi.org/10.1016/j.electacta.2015.02.070
  54. Z.-G. Shao, P. Joghee, and I.-M. Hsing, "Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells", J. Membr. Sci., 229, 43 (2004). https://doi.org/10.1016/j.memsci.2003.09.014
  55. N. E. De Almeida and E. B. Easton, "Nafion/sulfonated silica composite membranes for PEM fuel cells", ECS Trans., 28, 29 (2010). https://doi.org/10.1149/1.3496610
  56. T. Ko, K. Kim, S.-K. Kim, and J.-C. Lee, "Organic/inorganic composite membranes comprising of sulfonated Poly (arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells", Polymer, 71, 70 (2015). https://doi.org/10.1016/j.polymer.2015.06.055
  57. S. Y. So, Y. J. Yoon, T.-H. Kim, K. Yoon, and Y. T. Hong, "Sulfonated poly (arylene ether sulfone)/functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells", J. Membr. Sci., 381, 204 (2011). https://doi.org/10.1016/j.memsci.2011.07.024
  58. K. Oh, O. Kwon, B. Son, D. H. Lee, and S. Shanmugam, "Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition", J. Membr. Sci., 583, 103 (2019). https://doi.org/10.1016/j.memsci.2019.04.031
  59. T. Ko, K. Kim, M.-Y. Lim, S. Y. Nam, T.-H. Kim, S.-K. Kim, and J.-C. Lee, "Sulfonated poly (arylene ether sulfone) composite membranes having poly (2, 5-benzimidazole)-grafted graphene oxide for fuel cell applications", J. Mater. Chem., 3, 20595 (2015). https://doi.org/10.1039/C5TA04849D
  60. K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membr. Sci., 525, 125 (2017). https://doi.org/10.1016/j.memsci.2016.10.038
  61. L. Wang, B. Yi, H. Zhang, Y. Liu, D. Xing, Z.-G. Shao, and Y. Cai, "Sulfonated polyimide/PTFE reinforced membrane for PEMFCs", J. Power Sources, 167, 47 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.111
  62. S. Ryu, B. Lee, J. H. Kim, C. Pak, and S. H. Moon, "High-temperature operation of PEMFC using pore-filling PTFE/Nafion composite membrane treated with electric field", Int. J. Energy Res., 45, 19136 (2021). https://doi.org/10.1002/er.7017
  63. K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017). https://doi.org/10.1016/j.memsci.2017.05.014
  64. R. Gloukhovski, V. Freger, and Y. Tsur, "Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: A beginner's guide", Rev. Chem. Eng., 34, 455 (2018). https://doi.org/10.1515/revce-2016-0065
  65. J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, "Advanced composite polymer electrolyte fuel cell membranes", ECS Trans., 1995, 193 (1995).
  66. K. M. Nouel and P. S. Fedkiw, "Nafion®-based composite polymer electrolyte membranes", Electrochim. Acta, 43, 2381 (1998). https://doi.org/10.1016/S0013-4686(97)10151-7
  67. Y. Oshiba, J. Tomatsu, and T. Yamaguchi, "Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells", J. Power Sources, 394, 67 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.013
  68. H.-B. Song, J.-H. Park, J.-S. Park, and M.-S. Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies, 14, 4433 (2021). https://doi.org/10.3390/en14154433