DOI QR코드

DOI QR Code

Recent Progress on Proton Exchange Membrane Based Water Electrolysis

수소이온 교환막 기반 수전해의 최근 연구 동향

  • Yang, Seungmin (Nano Science and Engineering, Underwood International College, Yonsei University) ;
  • Rajkumar, Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 양승민 (연세대학교 언더우드학부 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2022.09.29
  • Accepted : 2022.10.11
  • Published : 2022.10.31

Abstract

In contemporary days, hydrogen-based energies including batteries are renowned to be effective. And its effectiveness comes from the fact that it possesses high efficiency as an energy carrier. Eco-friendly and high purity of hydrogens comes out from water electrolysis. And among different types of electrolysis, proton exchange membrane (PEM) water electrolysis is considered the most renewable, cheap, and eco-friendly. It produces oxygen and hydrogens which are feasible in using as energies. Since it has such a number of benefits, increased research is going on in PEM electrolysis. Nafion is widely used as PEM, but high cost and various other disadvantages leads to the exploration of alternative materials. This review is broadly classified into Nafion and non Nafion based PEM for water electrolysis.

현대에는 배터리를 비롯한 수소 기반 에너지가 효율적이라고 널리 알려져 있다.이러한 결과는 수소가 에너지 수송체로써의 높은 효율을 가지고 있다는 사실로부터 기반한다. 자연 친화적이며 높은 순도를 가진 수소는 수전해로부터 제조할 수 있다. 다양한 종류의 전기분해 중, 수소이온 교환막 수전해는 가장 재생 가능하며 싸고 자연 친화적이다. 이는 에너지로써 사용이 되기에 적합한 산소와 수소를 생성한다. 이와 같이 많은 장점이 있기에 활발한 연구가 수소이온 교환막 전기분해에 대해 진행되고 있다. 나피온은 수소이온 교환막으로 널리 쓰이지만, 비싼 비용과 다양한 다른 단점으로 인해 여러 가지 종류의 대체재가 개발되고 있다. 본 총설에서는 크게 나피온과 비나피온(non-Nafion) 기반 수소이온 교환막 수전해로 나누어 다루었다.

Keywords

References

  1. Y. T. Goh, R. Patel, S. J. Im, J. H. Kim, and B. R. Min, "Synthesis and characterization of poly (ether sulfone) grafted poly(styrene sulfonic acid) for proton conducting membranes", Korean J. Chem. Eng., 26, 518 (2009). https://doi.org/10.1007/s11814-009-0088-8
  2. H. Kang, C. H. Park, and C. H. Lee, "Development of molecular dynamics model for water electrolysis ionomer", Membr. J., 30, 433 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.433
  3. S. J. Im, R. Patel, S. J. Shin, J. H. Kim, and B. R. Min, "Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells", Korean J. Chem. Eng., 25, 732 (2008). https://doi.org/10.1007/s11814-008-0120-4
  4. T. K. Maiti, J. Singh, J. Majhi, A. Ahuja, S. Maiti, P. Dixit, S. Bhushan, A. Bandyopadhyay, and S. Chattopadhyay, "Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints", Polymer, 255, 125151 (2022). https://doi.org/10.1016/j.polymer.2022.125151
  5. S. M. Lee, R. Patel, and J. H. Kim, "Recent advance in microbial fuel cell based on composite membranes", Membr. J., 31, 120 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.120
  6. Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z.-F. Huang, X. Zhang, and J.-J. Zou, "Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers", Adv. Energy Mater., 12, 2103670 (2022). https://doi.org/10.1002/aenm.202103670
  7. S. Shiva Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - A review", Mater. Sci. Energy. Technol., 2, 442 (2019).
  8. B. Zhang, L. Fan, R. B. Ambre, T. Liu, Q. Meng, B. J. J. Timmer, and L. Sun, "Advancing proton exchange membrane electrolyzers with molecular catalysts", Joule, 4, 1408 (2020). https://doi.org/10.1016/j.joule.2020.06.001
  9. A. Selim, G. P. Szijjarto, L. Romanszki, and A. Tompos, "Development of WO3-Nafion based membranes for enabling higher water retention at low humidity and enhancing PEMFC performance at intermediate temperature operation", Polym., 14, 2492 (2022). https://doi.org/10.3390/polym14122492
  10. B.-H. Goo, S. Y. Paek, A. Z. Al Munsur, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, "Polyamide-coated Nafion composite membranes with reduced hydrogen crossover produced via interfacial polymerization", Int. J. Hydrogen Energy, 47, 1202 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.074
  11. A. Muthumeenal, S. S. Pethaiah, and A. Nagendran, "Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol", Renew. Energy, 91, 75 (2016). https://doi.org/10.1016/j.renene.2016.01.042
  12. S. Thiele, B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, and D. Seeberger, "Bipolar membrane electrode assemblies for water electrolysis", ACS Appl. Ener. Mat., 3, 9635 (2020). https://doi.org/10.1021/acsaem.0c01127
  13. A. Z. Al Munsur, B. H. Goo, Y. Kim, O. J. Kwon, S. Y. Paek, S. Y. Lee, H. J. Kim, and T. H. Kim, "Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly(acrylic acid) and poly(vinyl alcohol)", ACS Appl. Mater. Interfaces, 13, 28188 (2021). https://doi.org/10.1021/acsami.1c05662
  14. T. Kim, Y. Sihn, I.-H. Yoon, S. J. Yoon, K. Lee, J. H. Yang, S. So, and C. W. Park, "Monolayer hexagonal boron nitride nanosheets as proton-conductive gas barriers for polymer electrolyte membrane water electrolysis", ACS Appl. Nano Mat., 4, 9104 (2021). https://doi.org/10.1021/acsanm.1c01691
  15. C. J. Lee, J. Song, K. S. Yoon, Y. Rho, D. M. Yu, K.-H. Oh, J. Y. Lee, T.-H. Kim, Y. T. Hong, H.-J. Kim, S. J. Yoon, and S. So, "Controlling hydrophilic channel alignment of perfluorinated sulfonic acid membranes via biaxial drawing for high performance and durable polymer electrolyte membrane water electrolysis", J. Power Sources, 518, 230772 (2022). https://doi.org/10.1016/j.jpowsour.2021.230772
  16. A. Albert, A. O. Barnett, M. S. Thomassen, T. J. Schmidt, and L. Gubler, "Radiation-Grafted polymer electrolyte membranes for water electrolysis cells: Evaluation of key membrane properties", ACS Appl. Mater. Interfaces, 7, 22203 (2015). https://doi.org/10.1021/acsami.5b04618
  17. J. Bender, B. Mayerhofer, P. Trinke, B. Bensmann, R. Hanke-Rauschenbach, K. Krajinovic, S. Thiele, and J. Kerres, "H+-conducting aromatic multiblock copolymer and blend membranes and their application in pem electrolysis", Polym., 13, 3467 (2021). https://doi.org/10.3390/polym13203467
  18. S. Choi, S. H. Shin, D. H. Lee, G. Doo, D. W. Lee, J. Hyun, S. H. Yang, D. Man Yu, J. Y. Lee, and H. T. Kim, "Oligomeric chain extender-derived poly(p-phenylene)-based multi-block polymer membranes for a wide operating current density range in polymer electrolyte membrane water electrolysis", J. Power Sources, 526, 231146 (2022). https://doi.org/10.1016/j.jpowsour.2022.231146
  19. S. Y. Han, D. M. Yu, Y. H. Mo, S. M. Ahn, J. Y. Lee, T. H. Kim, S. J. Yoon, S. Hong, Y. T. Hong, and S. So, "Ion exchange capacity controlled biphenol-based sulfonated poly(arylene ether sulfone) for polymer electrolyte membrane water electrolyzers: Comparison of random and multi-block copolymers", J. Membr. Sci., 634, 119370 (2021). https://doi.org/10.1016/j.memsci.2021.119370
  20. C. Klose, T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K.-D. Kreuer, and S. Vierrath, "All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency", Adv. Energy Mater., 10, 1903995 (2020). https://doi.org/10.1002/aenm.201903995
  21. S. Siracusano, V. Baglio, F. Lufrano, P. Staiti, and A. S. Arico, "Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane", J. Membr. Sci., 448, 209 (2013). https://doi.org/10.1016/j.memsci.2013.07.058
  22. N. R. Kang, T. H. Pham, H. Nederstedt, and P. Jannasch, "Durable and highly proton conducting poly(arylene perfluorophenylphosphonic acid) membranes", J. Membr. Sci., 623, 119074 (2021). https://doi.org/10.1016/j.memsci.2021.119074