DOI QR코드

DOI QR Code

Evaluation of Fluidity Over Time and Mechanical Properties of Cement-based Composite Materials for 3D Printing

3D 프린팅용 시멘트계 복합재료의 경시변화 및 역학적 특성평가

  • 서은아 (한국건설기술연구원 구조연구본부) ;
  • 이호재 (한국건설기술연구원 구조연구본부) ;
  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공)
  • Received : 2022.07.25
  • Accepted : 2022.08.29
  • Published : 2022.08.30

Abstract

This study evaluated changes in fluidity and rheological properties over time for 3D printed composite materials, and evaluated compressive strength and splitting tensile strength properties for laminated and molded specimens. The composite material for 3D printing starts to change rapidly after 30 minutes of extrusion, and the viscosity of the material tends to be maintained up to 90 minutes, but it was confirmed that construction within 60 minutes after mixing is effective. The compressive strength of the laminated test specimen showed equivalent or better performance at all ages compared to the molded test specimen. In the stress-strain curve of the laminated specimen, the initial slope was similar to that of the molded specimen, but the descending slope was on average 1.9 times higher than that of the molded specimen, indicating relatively brittle behavior. The splitting tensile strength of the P-V laminated specimen was about 6% lower than that of the molded specimen. It is judged that this is because the interfacial adhesion force against the vertical load is affected by the pattern direction of the laminated test specimen.

이 연구는 3D 프린팅 복합재료에 대하여 굳지 않은 상태에서는 시간에 따른 경시변화와 레올로지 특성을 평가하였으며, 굳은 상태에서는 적층된 시험체와 몰드 시험체에 대하여 압축강도와 쪼갬 인장강도 특성을 평가하였다. 3D 프린팅용 복합재료는 압출 30분 후부터 급격한 물성변화가 시작되고 90분까지 재료의 점도가 유지되는 경향을 나타나지만, 이송성능과 적층성능의 품질을 확보하기 위해서는 배합 후 60분 이내의 시공이 효과적임을 확인하였다. 적층 시험체의 압축강도는 몰드 시험체 대비 전 재령에서 동등이상의 성능을 나타내었다. 적층 시험체의 응력-변형률 곡선에서 초기 기울기는 몰드 시험체와 유사하게 나타났지만, 최대 응력 이후의 하강 기울기는 몰드 시험체 대비 평균적으로 1.9배 높게 나타나 상대적으로 취성적인 거동을 하였다. 적층 패턴으로 수직으로 측정한 쪼갬인장강도는 몰드 시험체 대비 약 6% 낮게 나타났으며, 적층 패턴을 수평으로 측정할때는 몰드 시험체와 거의 동일한 쪼갬 인장강도를 나타내었다. 이는 적층 시험체의 패턴 방향에 따라 수직하중에 대한 계면간의 부착력이 영향을 받기 때문으로 판단된다.

Keywords

Acknowledgement

이 논문은 2022년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(과제명: 수중 적층 타설용 콘크리트 복합재료 개발, 과제번호: 20200555)

References

  1. ASTM Standard C39 Committee, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM Standard International,
  2. Heras Murcia, D., Genedy, M., and Reda Taha, M.M. (2020), Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete, Construction & building materials, 262, 120559 https://doi.org/10.1016/j.conbuildmat.2020.120559
  3. Huang, X., W. Yang, F. Song, and J. Zou. (2022), Study on the mechanical properties of 3D printing concrete layers and the mechanism of influence of printing parameters, Construction and Building Materials, 335, 127496. https://doi.org/10.1016/j.conbuildmat.2022.127496
  4. Ji, G., J. Xiao, P. Zhi, Y.-C. Wu, and N. Han. (2022), Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates, Construction and Building Materials, 325, 126740. https://doi.org/10.1016/j.conbuildmat.2022.126740
  5. KCI-CT115, (2021), Standard Method of Making Compressive Strength Specimens of Underwater Additive Layering Concrete, Standards of the Korean Concrete Society
  6. Lee, H. J., Kim, J. H., Moon, J. H., Kim, W. W., and Seo, E. A. (2019), Correlation between pore characteristics and tensile bond strength of additive manufactured mortar using X-ray computed tomography, Construction & building materials, 226, 712-720 https://doi.org/10.1016/j.conbuildmat.2019.07.161
  7. Lee, H. J., Seo, E. A., Kim, W. W., Moon, J. H. (2021), Experimental Study on Time-Dependent Changes in Rheological Properties and Flow Rate of 3D Concrete Printing Materials, Materials, 14(21), 6278. https://doi.org/10.3390/ma14216278
  8. Lee, K. W., Lee, H. J., and Cho, M. S. (2022), Correlation between thixotropic behavior and buildability for 3D concrete printing, Construction & building materials, 347, 128498 https://doi.org/10.1016/j.conbuildmat.2022.128498
  9. Roussel, N. (2006), A thixotropy model for fresh fluid concretes: Theory, validation and applications, Cement and Concrete Research, 36(10), 1797-1806. https://doi.org/10.1016/j.cemconres.2006.05.025
  10. Seo, E. A., Lee, H. J. and Yang, K.H. (2021), Strength Characteristics of 3D Printed Composite Materials According to Lamination Patterns, Journal of the Korea institute for structural maintenance and inspection, 25(6), 193-198. https://doi.org/10.11112/JKSMI.2021.25.6.193
  11. Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J. and Leong, K. F. (2017), 3D printing trends in building and construction industry: a review, Virtual and Physical Prototyping, 12(3), 261-276. https://doi.org/10.1080/17452759.2017.1326724
  12. Zhang, J., J. Wang, S. Dong, X. Yu, and B. Han (2019), A review of the current progress and application of 3D printed concrete, Composites Part A: Applied Science and Manufacturing, 125, 105533. https://doi.org/10.1016/j.compositesa.2019.105533