DOI QR코드

DOI QR Code

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod

국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성

  • 최소영 (강릉원주대학교 방재연구소) ;
  • 김일순 (강릉원주대학교 방재연구소) ;
  • 최명성 (단국대학교 토목환경공학과) ;
  • 양은익 (강릉원주대학교 토목공학과)
  • Received : 2022.08.31
  • Accepted : 2022.09.26
  • Published : 2022.10.30

Abstract

Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

전 세계적으로 철근의 부식으로 인해 발생하는 철근 콘크리트 구조물의 성능 저하를 해결하기 위하여, FRP를 철근으로 대체하는 것은 상당한 주목을 받고 있으며, FRP 물성을 향상시켜 구조물의 사용 수명을 연장하기 위한 기술 개발이 진행되어 왔다. 이에 따라, 고강도 및 고강성을 갖는 국산형 CFRP rod와 CFRP grid의 개발 및 제조 기술이 필요하며, 이를 적용한 구조 부재의 거동을 평가한 연구가 수행되어야 한다. 본 연구에서는 국내 시범 생산 CFRP rod를 보강근으로 사용한 보 부재의 휨 전단 거동을 보강비와 전단 경간비에 따라 검토하였다. 그 결과, 일정 범위를 벗어난 보강비를 사용할 경우, CFRP rod에 의한 성능 개선 효과가 상쇄되거나 효과가 크지 않는 것으로 나타났다. 한편, CFRP rod를 사용한 보 부재의 경우, 국내 구조 설계 기준에 근거하여 전단 철근을 배치하더라도 전단 파괴 가능성이 발생하였다. 그러므로 CFRP rod를 사용한 보 부재의 경우, 보강비 제한과 전단파괴를 방지하기 위한 검토가 필요한 것으로 판단된다. 또한, CFRP rod를 사용한 보 부재의 연성은 변형 에너지 평가방법에 따라 결정되므로, 보 부재의 구조 거동을 반영한 변형 에너지 평가법을 적용하여 연성을 평가해야 한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 22CFRP-C163381-02).

References

  1. ACI Committee 440 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars(ACI 440.1R-15), American Concrete Institute, Michigan.
  2. Ahmed, E. A., El-Salakawy, E. F., and Benmokrane, B. (2010), Performance Evaluation of Glass Fiber-Reinforced Polymer Shear Reinforcement for Concrete Beams, ACI Structural Journal, 107(1), 53-62.
  3. Benmokrane B., Chaallal O. and Masmoudi R.(1996), Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars, ACI Structural Journal, 93(1), 46-55.
  4. CSA Group (2002), Design and Construction of Building Components with Fibre-Reinforced Polymers (CAN/CSA S806-02), Canadian Standard Association, Toronto.
  5. Cheon, J. H., Kim, K. M., and Shin, H. M. (2021), Analytical Approach to Evaluate the Nonlinear Beahviors of One-way Concrete Slab Reinforced with CFRP Grid Reinforcements, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 218-226 (in Korean). https://doi.org/10.11112/JKSMI.2021.25.6.218
  6. Choi, S. Y., Choi, M. S., Kim, I. S., and Yang, E. I. (2021), A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(5), 149-157 (in Korean). https://doi.org/10.11112/JKSMI.2021.25.5.149
  7. Ebead, U., and Marzouk, H. (2004), Fiber-Reinforced Polymer Strengthening of Two-Way Slabs, ACI Structural Journal, 101(5), 78-86.
  8. Grace, N. F., Soliman,A. K., Sayed, G. A., and Saleh, K. R. (1998), Behavior and Ductility of Simple and Continuous FRP Reinforced Beams, Journal of Composites for Construction, 2(4), 186-194. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(186)
  9. Goldston, W. M., Remennikov, A. M., and Sheikh, M. N. (2016), Experimental Investigation of the Behaviour of Concrete Beams Reinforced with GFRP Bars under Static and Impact Loading, Engineering Structures, 113, 220-232. https://doi.org/10.1016/j.engstruct.2016.01.044
  10. Jaeger, L. G., Tadros, G., and Mufti, A. (1995). Balanced Section, Ductility, and Deformability in Concrete with FRP Reinforcement, Research Rep. No. 2, Industry's Center for Computer-Aided Engineering, Technical Univ. of Nova Scotia, Halifax.
  11. Jaeger, L. G., Mufti, A. A., and Tadros, G. (1997), The Concept of the Overall Performance Factor in Rectangular-Section Reinforced Concrete Members, Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Tokyo.
  12. Jang, N. S., Kim, Y. S., and Oh, H. S. (2021), Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab Based on FRP Reinforced Ratio, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(5), 173-181 (in Korean). https://doi.org/10.11112/JKSMI.2021.25.5.173
  13. JSCE Research Subcommittee on Continuous Fiber Reinforcing Materials (1997), Recommendations for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers, Tokyo.
  14. Kara, I. F., Ashour, A. F., and Koroglu, M. A. (2015), Flexural Behavior of Hybrid FRP/steel Reinforced Concrete Beams, Composite Structures, 129, 111-121. https://doi.org/10.1016/j.compstruct.2015.03.073
  15. KCI Committee 112 (2019), FRP Reinforcement Structural Design Guidelines (KCI PM112.1-19), Korea Concrete Institute, Seoul (in Korean).
  16. Korean Design Standard (2022), Design Code for Shear and Torsion of Concrete Structures(KDS 14 20 22), Korea Construction Standard Center, Seoul (in Korean).
  17. Korea Industrial Standards Commission (2017(a)), Standard Test Method for Compressive Strength of Concrete(KS F 2405), Korean Agency for Technology and Standards, Seoul (in Korean).
  18. Korea Industrial Standards Commission (2017(b)), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio in Compression of Cylindrical Concrete Specimens(KS F 2438), Korean Agency for Technology and Standards, Seoul (in Korean).
  19. Kim, S. E., and Kim. S. H.(2018), Flexural Behavior of Fiber Reinforced Concrete Beams with Hybrid Double-layer Reinforcing Bars, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(1), 199-207 (in Korean). https://doi.org/10.11112/JKSMI.2018.22.1.199
  20. Kim Y. J., Hmidan A., and Yazdani S. (2015), Variable Shear Span-Depth Ratios for Reinforced Concrete Beams Strengthened with Various Carbon Fiber-Reinforced Polymer Configurations, ACI Structural Journal, 112(5), 635-643. https://doi.org/10.14359/51687712
  21. Lee, S. H., Ahn, S. H. (2005), Flexural Behavior of Concrete Beam Members with Longitudinal FRP Rod Reinforcement, Journal of the Architectural Institute of Korea Structure & Construction, 21(1), 67-74 (in Korean).
  22. Naaman, A. E., and Jeong, S. M. (1995), Structural Ductility of Concrete Beams Prestressed with FRP Tendons, Proceedings of the Second International RILEM Symposium, RILEM, London.
  23. Saatci, S., and Vecchio, F. J. (2009), Effects of Shear Mechanisms on Impact Behavior of Reinforced Concrete Beams, ACI Structural Journal, 106(1), 78-86.
  24. Shin, S.W., Ahn, J. M., Han, B.S., and Seo, D.W. (2006), Effects of Reinforcement Ratio on Concrete Beams Reinforced with FRP Re-bars, Journal of the Architectural Institute of Korea Structure & Construction, 22(2), 19-26 (in Korean).
  25. Tureyen, K., and Frosch, R. J. (2002), Shear Tests of FRP-Reinforced Concrete Beams without Stirrups, ACI Structural Journal, 99(4), 427-434.
  26. Wegian, F.M., and Abdalla, H. A. (2005), Shear Capacity of Concrete Beams Reinforced with Fiber Reinforced Polymers, Composite Structures, 71(1), 130-138. https://doi.org/10.1016/j.compstruct.2004.10.001