DOI QR코드

DOI QR Code

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Received : 2021.09.04
  • Accepted : 2022.10.26
  • Published : 2022.10.25

Abstract

Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

Keywords

Acknowledgement

The financial support of the SICILFERRO TORRENOVESE s.r.l. company for the research is acknowledged, and the authors thank. Mauro Scurria and. Nicolo Cancelliere for helpful discussion and active participation in the research project.

References

  1. Abaqus, V. 6.14 (2016), Online Documentation Help, Theory manual: Dassault Systems.
  2. ACI-374.2-R-13 (2013), Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads, Reported by ACI committee 374, American Concrete Institute: Farmington Hills, MI, USA.
  3. Ballarini, R., La Mendola, L., Le, J. and Monaco, A. (2017), "Computational study of failure of hybrid steel trussed concrete beams", J. Struct. Eng., 143, 04017060. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001792.
  4. Belleri, A., Marini, A., Riva, P. and Nascimbene, R. (2017), "Dissipating and re-centring devices for portal-frame precast structures", Eng. Struct., 150, 736-45. https://doi.org/10.1016/j.engstruct.2017.07.072.
  5. Ceb-Fip Model Code 2010 (2010), Comite Euro-International du Beton, Lausanne, Switzerland.
  6. Colajanni, P., La Mendola, L. and Monaco, A. (2014), "Stress transfer mechanisms investigation in hybrid steel trussedconcrete beams by push-out tests", J. Constr. Steel Res., 95, 56-70. https://doi.org/10.1016/j.jcsr.2013.11.025.
  7. Colajanni, P., La Mendola, L. and Monaco, A. (2015a), "Stiffness and strength of composite truss beam to R.C. column connection in MRFs", J. Constr. Steel Res., 113, 86-100. https://doi.org/10.1016/j.jcsr.2015.06.003.
  8. Colajanni, P., La Mendola, L., Latour, M., Monaco, A. and Rizzano, G. (2015b), "Fem analysis of push-out test response of Hybrid Steel Trussed Concrete Beams (HSTCBs)", J. Constr. Steel Res., 111, 88-102, https://doi.org/10.1016/j.jcsr.2015.04.011.
  9. Colajanni, P., La Mendola, L., Monaco, A. and Spinella, N. (2016), "Cyclic behavior of composite truss beam-to-RC column joints in MRFs", Key Eng. Mater., 711, 681-689. https://doi.org/10.4028/www.scientific.net/KEM.711.681.
  10. Colajanni, P., La Mendola, L. and Monaco, A. (2017a), "Experimental investigation on the shear response of precast steel-concrete trussed beams", J. Struct. Eng., 143, 04016156. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001642.
  11. Colajanni, P., La Mendola, L., Latour, M., Monaco, A. and Rizzano, G. (2017b), "Analytical prediction of the shear connection capacity in composite steel-concrete trussed beams". Mater. Struct., 50, 48. https://doi.org/10.1617/s11527-016-0931-4.
  12. Colajanni, P., La Mendola, L. and Monaco, A. (2018), "Stress transfer and failure mechanisms in steel-concrete trussed beams: experimental investigation on slab-thick and full-thick beams", Constr. Build. Mater., 161, 267-281. https://doi.org/10.1016/j.conbuildmat.2017.11.134.
  13. Colajanni, P., La Mendola, L., Monaco, A. and Pagnotta, S. (2020a), "Dissipative connections of rc frames with prefabricated steel-trussed-concrete beams", Ingegneria Sismica, 37, 51-63. http://ingegneriasismica.org/product/5-2020-1-dissipative-connections-of-rc-frames-withprefabricatedsteel-trussed-concrete-beams.
  14. Colajanni, P., Pagnotta, S., Recupero, A. and Spinella N. (2020b), "Shear resistance analytical evaluation for RC beams with transverse reinforcement with two different inclinations", Mater. Struct., 53, 18. https://doi.org/10.1617/s11527-020-1452-8.
  15. Colajanni, P., La Mendola, L., Monaco, A. and Pagnotta, S. (2021a), "Design of RC joints equipped with hybrid trussed beams and friction dampers", Eng. Struct., 227, 111442. https://doi.org/10.1016/j.engstruct.2020.111442.
  16. Colajanni, P., La Mendola, L., Monaco, A. and Pagnotta, S. (2021b), "Seismic performance of earthquake-resilient RC frames made with HSTC beams and friction damper devices", J. Earthq. Eng. in press, https://doi.org/10.1080/13632469.2021.1964652.
  17. D'Aniello, M., Cassiano, D. and Landolfo, R. (2017), "Simplified criteria for finite element modelling of European preloadable bolts", Steel Compos. Struct., 24(6), 643-658. https://doi.org/10.12989/scs.2017.24.6.643.
  18. D'Antimo, M., Latour, M., Ferrante Cavallaro, G., Jaspart, J.P., Ramhormozian, S. and Demonceau, J.F. (2020), "Short- and long-term loss of preloading in slotted bolted connections", J. Constr. Steel Res., 167, 105956. https://doi.org/10.1016/j.jcsr.2020.105956.
  19. Eligehausen, R., Popov, E.P. and Bertero, V.V. (1983), "Local bond stress-slip relationships of deformed bars under generalized excitations, UCB/EERC-83/23, College of Engineering, University of California, Berkeley, CA.
  20. EN 1992:1-1 (2005), Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, CEN.
  21. EN 1993:1-8 (2005), Design of steel structures - Part 1-8: design of joints, CEN.
  22. Ferrante Cavallaro, G., Francavilla, A., Latour, M., Piluso, V. and Rizzano, G. (2017), "Experimental behaviour of innovative thermal spray coating materials for FREEDAM joints", Compos. Part B: Eng., 115, 289-299. https://doi.org/10.1016/j.compositesb.2016.09.075.
  23. Ferrante Cavallaro, G., Latour, M., Francavilla, A.B., Piluso, V. and Rizzano, G. (2018), "Standardised friction damper bolt assemblies time-related relaxation and installed tension variability", J. Constr. Steel Res., 141, 145-155. https://doi.org/10.1016/j.jcsr.2017.10.029.
  24. Hashemi, A., Zarnani, P., Masoudnia, R. and Quenneville, P. (2017), "Seismic resistant rocking coupled walls with innovative Resilient Slip Friction (RSF) joints", J. Constr. Steel Res., 129, 215-226. https://doi.org/10.1016/j.jcsr.2016.11.016.
  25. Heistermann, C., Veljkovic, M., Simŏes, R., Rebelo, C. and Simŏes da Silva, L. (2013), "Design of slip resistant lap joints with long open slotted holes", J. Constr. Steel Res., 82, 223-233. https://doi.org/10.1016/j.jcsr.2012.11.012.
  26. Hosaka, T., Mitsuki, K., Hiragi, H., Ushijima, Y., Tachibana, Y. and Watanabe, H. (2000), "An experimental study on shear characteristics of perfobond strip and its rational strength equations", J. Struct. Eng. JSCE 46A, 1593-1604.
  27. Khoo, H.H., Clifton, C., Butterworth, J., MacRae, G. and Ferguson, G. (2012), "Influence of steel shim hardness on the Sliding Hinge Joint performance", J. Constr. Steel Res., 72, 119-129. https://doi.org/10.1016/j.jcsr.2011.11.009.
  28. Khoo, H.H., Clifton, C., MacRae, G., Zhou, H. and Ramhormozian, S. (2015), "Proposed design models for the asymmetric friction connection", Earthq. Eng. Struct. Dyn., 44, 1309-1324. https://doi.org/10.1002/eqe.2520.
  29. Latour, M., Piluso, V. and Rizzano G. (2015), "Free from damage beam-to-column joints testing and design of DST connections with friction pads", Eng. Struct., 85, 219-233. https://doi.org/10.1016/j.engstruct.2014.12.019.
  30. Latour, M., Piluso, V. and Rizzano, G. (2018a), "Experimental analysis of beam-to-column joints equipped with sprayed aluminium friction dampers", J. Constr. Steel Res., 146, 33-48. https://doi.org/10.1016/j.jcsr.2018.03.014.
  31. Latour, M., D'Aniello, M., Zimbru, M., Rizzano, G., Piluso, V. and Landolfo, R. (2018b), "Removable friction dampers for low-damage steel beam-to-column joint", Soil Dyn. Earthq. Eng., 115, 66-81, https://doi.org/10.1016/j.soildyn.2018.08.002.
  32. Latour, M., Piluso, V. and Rizzano, G. (2014), "Experimental analysis on friction materials for supplemental damping devices", Constr. Build. Mater., 65, 159-176. https://doi.org/10.1016/j.conbuildmat.2014.04.092.
  33. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solids Struct., 25, 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  34. Monaco, A. (2016), "Numerical prediction of the shear response of semi-prefabricated steel-concrete trussed beams", Constr. Build. Mater, 124, 462-474. https://doi.org/10.1016/j.conbuildmat.2016.07.126.
  35. Morgen, B.G. and Kurama, Y.C. (2004), "A friction damper for post-tensioned precast concrete moment frames", PCI J., 49, 112-133. https://doi.org/10.15554/pcij.07012004.112.133.
  36. Morgen, B.G. and Kurama, Y.C. (2008), "Seismic response evaluation of posttensioned precast concrete frames with friction dampers", J. Struct. Eng., 134, 132-145. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(132).
  37. Pampanin, S., Amaris, A., Akguzel, U. and Palermo, A. (2006), "Experimental Investigations on High-Performance Jointed Ductile Connections for Precast Frames", Proceedings of the First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland.
  38. Pampanin, S. (2015), "Towards the "ultimate earthquake-proof" building: Development of an integrated low-damage system", In: Ansal A. Perspectives on European Earthquake Engineering and Seismology, Geotechnical, Geological and Earthquake Engineering, 39. https://doi.org/10.1007/978-3-319-16964-4_13.
  39. Priestley, M.J.N., Sritharan, S., Conley, J.R. and Pampanin, S. "Preliminary results and conclusions from the PRESSS five storey precast concrete test building", PCI J., 44, (1999) 42-67. https://doi.org/10.15554/pcij.11011999.42.67
  40. Ramhormozian, S., Clifton, G.C., MacRae, G.A. and Khoo, H.H. (2018), "The sliding hinge joint: final steps towards an optimum low damage seismic-resistant steel system", Key Eng. Mater., 763, 751-760. https://doi.org/10.4028/www.scientific.net/KEM.763.751.
  41. Saenz, L.P. (1964), "Discussion of equation for the stress-strain curve of concrete", ACI J. 61, 1229-1235.
  42. Song, L.L., Guo, T. and Chen, C. (2014), "Experimental and numerical study of a self-centring prestressed concrete moment resisting frame connection with bolted web friction devices", Earthq. Eng. Struct. Dyn., 43, 529-545. https://doi.org/10.1002/eqe.2358.
  43. Tartaglia, R., D'Aniello, M., Campiche, A. and Latour, M. (2021), "Symmetric friction dampers in beam-to-column joints for lowdamage steel MRFs", J. Constr. Steel Res., 184, 106791. https://doi.org/10.1016/j.jcsr.2021.106791.
  44. Takagi, J. and Wada, A. (2019), "Recent earthquakes and the need for a new philosophy for earthquake-resistant design", Soil Dyn. Earthq. Eng., 119, 499-507. https://doi.org/10.1016/j.soildyn.2017.11.024.
  45. Tsampras, G., Sause, R., Zhang, D., Fleischman, R.B., Restrepo, J.I., Mar, D. and Maffei, J. (2016), "Development of deformable connection for earthquake-resistant buildings to reduce floor accelerations and force responses", Earthq. Eng. Struct. Dyn., 45, 1473-1494. https://doi.org/10.1002/eqe.2718.
  46. Tsampras, G., Sause, R., Fleischman, R.B. and Restrepo, J.I. (2018), "Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to lateral force resisting system", Earthq. Eng. Struct. Dyn., 47, 1032-1053. https://doi.org/10.1002/eqe.3004.
  47. Yang, T.S. and Popov, E.P. (1995), "Experimental and analytical studies of steel connections and energy dissipators", UCB/EERC-95/13, College of Engineering, University of California, Berkeley, USA.
  48. Yun, X. and Gardner, L. (2017), "Stress-strain curves for hotrolled steels", J. Constr. Steel Res., 133, 36-46. https://doi.org/10.1016/j.jcsr.2017.01.024.
  49. Zhang, Z., Fleischman, R.B., Restrepo, J.I., Guerrini, G., Nema, A., Zhang, D., Shakya, U., Tsampras, G. and Sause, R. (2018), "Shake-table test performance of an inertial force-limiting floor anchorage system", Earthq. Eng. Struct. Dyn., 47, 1987-2011. https://doi.org/10.1002/eqe.3047.
  50. Zheng, S., Liu, Y., Yoda, T. and Lin, W. (2016), "Parametric study on shear capacity of circular-hole and long-hole perforbond shear connector", J. Constr. Steel Res. 117, 64-80. https://doi.org/10.1016/j.jcsr.2015.09.012.