DOI QR코드

DOI QR Code

The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by manipulating plant defense signals and antifungal metabolites degradation

  • Chen, Huchen (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Zhang, Shuhan (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • He, Shengnan (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • A, Runa (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Wang, Mingyang (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Liu, Shouan (Laboratory of Tea and Medicinal Plant Pathology, Jilin University)
  • Received : 2021.10.13
  • Accepted : 2022.03.29
  • Published : 2022.11.01

Abstract

Background: Panax ginseng Meyer is one of the most valuable medicinal plants which is enriched in anti-microbe secondary metabolites and widely used in traditional medicine. Botrytis cinerea is a necrotrophic fungus that causes gray mold disease in a broad range of hosts. B. cinerea could overcome the ginseng defense and cause serious leaf and root diseases with unknown mechanism. Methods: We conducted simultaneous transcriptomic and metabolomic analysis of the host to investigate the defense response of ginseng affected by B. cinerea. The gene deletion and replacement were then performed to study the pathogenic gene in B. cinerea during ginseng - fungi interaction. Results: Upon B. cinerea infection, ginseng defense responses were switched from the activation to repression, thus the expression of many defense genes decreased and the biosynthesis of antifungal metabolites were reduced. Particularly, ginseng metabolites like kaempferol, quercetin and luteolin which could inhibit fungi growth were decreased after B. cinerea infection. B. cinerea quercetin dioxygenase (Qdo) involved in catalyzing flavonoids degradation and ∆BcQdo mutants showed increased substrates accumulation and reduced disease development. Conclusion: This work indicates the flavonoids play a role in ginseng defense and BcQdo involves in B. cinerea virulence towards the P. ginseng. B. cinerea promotes disease development in ginseng by suppressing of defense related genes expression and reduction of antifungal metabolites biosynthesis.

Keywords

Acknowledgement

This work was partly supported by the National Natural Science Foundation of China (No. 31370689 and 32171801) and the Cross-Disciplinary Innovation Founding of Jilin University No. JLUXKJC2020313. We thanked Prof. Dr. Xinchao Wang (TRI, CAAS) for kindly provided pCAMBIA1303. We thanked Prof. Dr. Paul Tudzynski from University of Munster, for their kindly providing Botrytis cinerea strain B05.10.

References

  1. Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plantpathogen interactions. Nat Rev Genet 2010;11:539-48. https://doi.org/10.1038/nrg2812
  2. Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science 2013;341:746-51. https://doi.org/10.1126/science.1236011
  3. Lorang J. Necrotrophic Exploitation and Subversion of Plant Defense: a lifestyle or just a phase, and implications in breeding resistance. Phytopathology 2019;109:332-46. https://doi.org/10.1094/PHYTO-09-18-0334-IA
  4. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 2012;13:414-30. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  5. Fillinger S, Elad Y. Botrytis: the fungus, the pathogen and its management in agricultural systems. Cham, Switzerland: Springer International Publishing; 2016.
  6. Denance N, Ranocha P, Oria N, Barlet X, Riviere MP, Yadeta KA, Hoffmann L, Perreau F, Clement G, Maia-Grondard A, et al. Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J 2013;73:225-39. https://doi.org/10.1111/tpj.12027
  7. Zhou JM, Zhang Y. Plant Immunity: danger perception and signaling. Cell 2020;28:978-89. https://doi.org/10.1016/j.cell.2020.04.028
  8. Jones JD, Dangl JL. The plant immune system. Nature 2006;444:323-9. https://doi.org/10.1038/nature05286
  9. Jones JD, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science 2016;354:aaf6395. https://doi.org/10.1126/science.aaf6395
  10. Ngou BPM, Ahn HK, Ding P, Jones JDG. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 2021;592:110-5. https://doi.org/10.1038/s41586-021-03315-7
  11. Yuan M, Ngou BPM, Ding P, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol 2021;62:102030. https://doi.org/10.1016/j.pbi.2021.102030
  12. Rowe HC, Kliebenstein DJ. Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 2008;180: 2237-50. https://doi.org/10.1534/genetics.108.091439
  13. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005;43:205-27. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  14. Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F. Network properties of robust immunity in plants. PLoS Genet 2009;5:e1000772. https://doi.org/10.1371/journal.pgen.1000772
  15. Birkenbihl RP, Somssich IE. Transcriptional plant responses critical for resistance towards necrotrophic pathogens. Front Plant Sci 2011;2:76.
  16. Guerreiro A, Figueiredo J, Sousa Silva M, Figueiredo A. Linking Jasmonic acid to grapevine resistance against the biotrophic oomycete Plasmopara viticola. Front Plant Sci 2016;7:565.
  17. Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X. Salicylic acid receptors activate jasmonic acid signalling through a noncanonical pathway to promote effector-triggered immunity. Nat Commun 2016;7:13099. https://doi.org/10.1038/ncomms13099
  18. Birkenbihl RP, Liu S, Somssich IE. Transcriptional events defining plant immune responses. Curr Opin Plant Biol 2017;38:1-9. https://doi.org/10.1016/j.pbi.2017.04.004
  19. Kazan K, Lyons R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 2014;26:2285-309. https://doi.org/10.1105/tpc.114.125419
  20. Grindle M. Phenotypic differences between natural and induced variants of Botrytis cinerea. J Gen Appl Microbiol 1979:111.
  21. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 2011;7:e1002230. https://doi.org/10.1371/journal.pgen.1002230
  22. Jayakodi M, Choi BS, Lee SC, Kim NH, Park JY, Jang W, Lakshmanan M, Mohan SVG, Lee DY, Yang TJ. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng. BMC Plant Biol 2018;18:62. https://doi.org/10.1186/s12870-018-1282-9
  23. Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33- mediated host immunity. Plant Cell Environ 2017;40:2189-206. https://doi.org/10.1111/pce.13022
  24. Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. Elife 2015;4:e07295. https://doi.org/10.7554/eLife.07295
  25. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357-60. https://doi.org/10.1038/nmeth.3317
  26. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511-5. https://doi.org/10.1038/nbt.1621
  27. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008;36:D480-4.
  28. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010;11:R14. https://doi.org/10.1186/gb-2010-11-2-r14
  29. He S, Chen H, Wei Y, An T, Liu S. Development of a DNA-based real-time PCR assay for the quantification of Colletotrichum camelliae growth in tea (Camellia sinensis). Plant Methods 2020;16:17. https://doi.org/10.1186/s13007-020-00564-x
  30. Feng HQ, Li GH, Du SW, Yang S, Li XQ, de Figueiredo P, Qin QM. The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation. Environ Microbiol 2017;19: 1730-49. https://doi.org/10.1111/1462-2920.13613
  31. Yellisetty V, Reddy LA, Mandapaka M. In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses. J Genet 2015;94:425-34. https://doi.org/10.1007/s12041-015-0540-y
  32. Lu Q, Wang Y, Li N, Ni D, Yang Y, Wang X. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola isolated from the tea plant [Camellia sinensis (L.) O. Kuntze]. Front Microbiol 2018;9:3060. https://doi.org/10.3389/fmicb.2018.03060
  33. Kim NH, Jayakodi M, Lee SC, Choi BS, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, van Nguyen B, et al. Genome and evolution of the shaderequiring medicinal herb Panax ginseng. Plant Biotechnol J 2018;16:1904-17. https://doi.org/10.1111/pbi.12926
  34. Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L, Cui W. Combined analysis of the fruit metabolome and transcriptome reveals candidate cenes involved in flavonoid biosynthesis in Actinidia arguta. Int J Mol Sci 2018;19:1471. https://doi.org/10.3390/ijms19051471
  35. Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A. Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiol 2019;180:1975-87. https://doi.org/10.1104/pp.19.00461
  36. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 2000;97:11655-60. https://doi.org/10.1073/pnas.97.21.11655
  37. Liu Z, Liu Y, Pu Z, Wang J, Zheng Y, Li Y, Wei Y. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett 2013;35:1765-80. https://doi.org/10.1007/s10529-013-1277-4
  38. Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012;3:222.
  39. Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016;34:441-9. https://doi.org/10.1016/j.biotechadv.2016.02.004
  40. Wasternack C, Strnad M. Jasmonates are signals in the biosynthesis of secondary metabolites-Pathways, transcription factors and applied aspects - a brief review. N Biotech 2019:1-11.
  41. Li B, Fan R, Guo S, Wang P, Zhu X, Fan Y, Chen Y, He K, Kumar A, Shi J, et al. The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis. Environ Exp Bot 2019;166:103807. https://doi.org/10.1016/j.envexpbot.2019.103807
  42. Li Y, Chen X, Wang J, Zou G, Wang L, Li X. Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch. PLoS One 2020;15:e0236565. https://doi.org/10.1371/journal.pone.0236565
  43. Horbowicz M, Wiczkowski W, Goraj-Koniarska J, Miyamoto K, Ueda J, Saniewski M. Effect of methyl jasmonate on the terpene trilactones, flavonoids, and phenolic acids in Ginkgo biloba L. Leaves: relevance to leaf senescence. Molecules 2021;26:4682. https://doi.org/10.3390/molecules26154682
  44. Vidhyasekaran P. PAMP Signals in plant innate immunity: signal perception and transduction. Dordrecht: Springer; 2013. p. 442.
  45. Kloppholz S, Kuhn H, Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 2011;21:1204-9. https://doi.org/10.1016/j.cub.2011.06.044
  46. Raffaele S, Rivas S. Regulate and be regulated: integration of defense and other signals by the AtMYB30 transcription factor. Front Plant Sci 2013;4:98.
  47. Lyons R, Iwase A, Gansewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, et al. The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Sci Rep 2013;3:2866. https://doi.org/10.1038/srep02866
  48. Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 2013;8:e53901. https://doi.org/10.1371/journal.pone.0053901
  49. Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol 2018;217:739-55. https://doi.org/10.1111/nph.14842
  50. Plett JM, Daguerre Y, Wittulsky S, Vayssieres A, Deveau A, Melton SJ, Kohler A, Morrell-Falvey JL, Brun A, Veneault-Fourrey C, et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci U S A 2014;111:8299-304. https://doi.org/10.1073/pnas.1322671111
  51. Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, et al. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 2012;24:3530-57. https://doi.org/10.1105/tpc.112.102046
  52. Blanco-Ulate B, Morales-Cruz A, Amrine KC, Labavitch JM, Powell AL, Cantu D. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Front Plant Sci 2014;5:435.
  53. Whitehead SR, Bowers MD. Evidence for the adaptive significance of secondary compounds in vertebrate-dispersed fruits. Am Nat 2013;182:563-77. https://doi.org/10.1086/673258
  54. Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg) 2005;7:581-91. https://doi.org/10.1055/s-2005-873009
  55. Yu C, Luo X, Zhan X, Hao J, Zhang L, Song Yb L, Shen C, Dong M. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC Plant Biol 2018;18:197. https://doi.org/10.1186/s12870-018-1412-4
  56. Sudheeran PK, Ovadia R, Galsarker O, Maoz I, Sela N, Maurer D, Feygenberg O, Oren Shamir M, Alkan N. Glycosylated flavonoids: fruit's concealed antifungal arsenal. New Phytol 2020;225:1788-98. https://doi.org/10.1111/nph.16251
  57. Razavi SM, Zahri S, Zarrini G, Nazemiyeh H, Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Bioorg Khim 2009;35: 414-6.
  58. Zhang Y, Butelli E, De Stefano R, Schoonbeek HJ, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D, Granell A, et al. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 2013;23:1094-100. https://doi.org/10.1016/j.cub.2013.04.072
  59. Ramos FA, Takaishi Y, Shirotori M, Kawaguchi Y, Tsuchiya K, Shibata H, Higuti T, Tadokoro T, Takeuchi M. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J Agric Food Chem 2006;54:3551-7. https://doi.org/10.1021/jf060251c
  60. Vela-Corcia D, Aditya Srivastava D, Dafa-Berger A, Rotem N, Barda O, Levy M. MFS transporter from Botrytis cinerea provides tolerance to glucosinolatebreakdown products and is required for pathogenicity. Nat Commun 2019;10:2886. https://doi.org/10.1038/s41467-019-10860-3