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Background: In addition to its use as a health food, ginseng is used in cosmetics and shampoo because of
its extensive health benefits. The ginsenoside, Rh2, is a component of ginseng that inhibits tumor cell
proliferation and differentiation, promotes insulin secretion, improves insulin sensitivity, and shows
antioxidant effects.
Methods: The effects of Rh2 on cell survival, extracellular matrix (ECM) protein expression, and cell
differentiation were examined. The antioxidant effects of Rh2 in UV-irradiated normal human dermal
fibroblast (NHDF) cells were also examined. The effects of Rh2 on mitochondrial function, morphology,
and mitophagy were investigated in UV-irradiated NHDF cells.
Results: Rh2 treatment promoted the proliferation of NHDF cells. Additionally, Rh2 increased the
expression levels of ECM proteins and growth-associated immediate-early genes in ultraviolet (UV)-
irradiated NHDF cells. Rh2 also affected antioxidant protein expression and increased total antioxidant
capacity. Furthermore, treatment with Rh2 ameliorated the changes in mitochondrial morphology,
induced the recovery of mitochondrial function, and inhibited the initiation of mitophagy in UV-
irradiated NHDF cells.
Conclusion: Rh2 inhibits mitophagy and reinstates mitochondrial ATP production and membrane po-
tential in NHDF cells damaged by UV exposure, leading to the recovery of ECM, cell proliferation, and
antioxidant capacity.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Exposure to ultraviolet (UV) radiation has numerous adverse
health effects, including the induction of inflammation, skin aging,
and cancer [1,2]. Sunlight is the main source of UV, and exposure is
increased by participation in outdoor recreational activities [3e5].
The skin is one of the largest organs in the human body, consti-
tuting approximately 16% of the total body mass; it consists of two
basic layers (epidermis and dermis). Because it is in direct contact
with the environment, the epidermis responds first to
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environmental factors, such as infectious pathogens, chemicals, and
UV [6e8].

UV exposure produces reactive oxygen species (ROS), which are
unstable free radicals that have adverse effects on health [9e11].
ROS produced in greater levels than can be managed by the body's
intrinsic antioxidant defense mechanisms can cause oxidative
stress, resulting in cell damage, apoptosis, and cell death [12e14].
Mitochondria, organelles closely related to ROS production, are
responsible for ATP production because of oxidative phosphoryla-
tion [15]. In addition, mitochondria have essential roles in initiating
apoptosis and autophagy. Excessive ROS stress induces mitophagy,
a selective autophagy process in mitochondria, which is considered
the main mechanism underlying the removal of damaged or un-
necessary mitochondria [16e18].

There are several types of ginsenosides; of these, Rh2 is a rare
panaxidol with potential therapeutic effects in cancers (e.g., breast,
leukemia, prostate, and pancreatic). Additionally, Rh2 shows
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anticancer activity by inhibiting the cell cycle in cancer cells; it also
induces apoptosis [19e22]. Rh2 is reportedly effective against UV-
damaged skin cells and exhibits anticancer effects [23]. However,
the relationship between the mitochondrial components respon-
sible for ROS generation and the effects of Rh2 remains unclear.

This study examined the functional roles and effects of Rh2 on
mitochondria, which are responsible for the regenerative capacity
of skin cells damaged by UV and ROS generation. Rh2 restored the
expression of UV-damaged skin-related genes; it also restored
mitochondrial function. Furthermore, excessive ROS generation
was reduced and mitophagy was suppressed in UV-exposure
normal human dermal fibroblast (NHDF) cells.

2. Materials and Methods

2.1. Rh2 material

The ginsenoside Rh2 (�97% purity) was purchased from Sigma-
Aldrich (St. Louis, MO, USA).

2.2. Cell culture and transfection

Normal Human Primary Dermal Fibroblasts (NHDF) cells were
purchased from ATCC (PCS-201012, Manassas, VA, USA). NHDF cells
were maintained in culture in Dulbecco's Modified Eagle's Media
containing 10% fetal bovine serum and 1% antibiotic. NHDF cells
were transiently transfected with pDsREd2-Mito and GFP-LC3
plasmid by using JetPEI reagents (poly plus transfection, NY, USA).

2.3. Analysis for cell viability

Cell viability assay were performed as previously described [24].
The cells were treated with Rh2 at dose of 1, 10, 50 mM Rh2 extract
for 24 h.

2.4. Real-time assay for cell proliferation

Cell proliferation was measured using the xCELLigence RTCA DP
system (Roche Diagnostics, Indianapolis, IN, USA), which monitors
cells in real-time. That is, cells were plated in well of E-Plate 16 (for
proliferation; NHDF 1 � 104) and incubated for indicated times.

2.5. Wound-healing assay

To perform cellular wound healing assays, monolayers of cells
were scraped using a 10 ml pipette tip. After 24 h of irradiating
(80 mJ/cm2) the cells with UV with a UV crosslinker (Vilber Lour-
mat, Collegien, France), the cells were un treated or treated with
Rh2 extract at a concentration of 1, 10, or 50 mM for 24 h. Thereafter,
the wound site was photographed using a microscope.

2.6. Antibodies and western blotting analysis

Western blot analysis was performed as previously describes
[24e26]. Briefly, cell were placed on ice and extracted with lysis
buffer including 1% v/v Nonidet P-40, 50 mM Tris-HCl, pH 7.5,
25 mM sodium fluoride, 120 mM NaCl, 0.1 mM sodium orthova-
nadate, 40 mM b-glycerol phosphate, 1 mM benzamidine, 1 mM
phenylmethylsulfonyl fluoride, and 2 mM microcystin-LR. Lysates
were centrifuged for 30min at 13,000 rpm. The lysates were loaded
by 7.5e12.5% SDS-PAGE, and transferred to Immobilon-P mem-
branes (Millipore). The membranes were blocked for 1 h in 1 X tri-
buffered saline buffer (TBS; 2.7 mM KCl, 140 mM NaCl, 250 mM
Tris- HCl, pH 7.4), including 5% skim milk and 0.1% Tween-20, fol-
lowed by an overnight incubation with each protein's 1st
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antibodies diluted 1000-fold or 2000-fold at 4 �C. The secondary
antibody was horseradish peroxidase-conjugated anti-mouse IgG
or anti-rabbit IgG (Komabiotech), diluted 2000-fold or 5000-fold in
the 1X TBSt buffer. To detect protein expression, it was visualized by
intensified chemiluminescence according to the manufacturer's
instructions (Thermo Fisher Scientific).
2.7. Quantitative real-time reverse transcription-polymerase chain
reaction (qRT-PCR)

qRT-PCR was performed as previously described [25]. The se-
quences of the primers sued for qRT-PCR were as follows (F: For-
ward, R: Reverse); human GAPDH: F-50-TCGACAGTCAGCCGCATCTT
CTTT/R-50-TACGACCAAATCCGTTGACTCCGA; human Collagen F-50-
TCCCCAGCCACAAAGAGTCTA/R-50-TTTCCACACGTCTCG GTCA/hu-
man Elastin; F-50- CTGCAAAGGCAGCCAAATAC/R-50- CACCAG-
GAACTA ACCCAAACT; MMP-2; F-50- GTGCTGAAGGACACACACTA
AAGAAGA/R-50-TTG CCATCCTTCTCAAAGTTGTAGG; human COL1
A1; F-50- AGCCAGCAGATCGAGAACAT/R-50- TCTTGTCCTTGGGGTTCT
TG.
2.8. ROS assay

ROS assay was performed as previously described [24]. NHDF
cells were plated and incubated at a density of 5 � 105 cells/well in
6-well culture plates for 24 h. Thereafter, cells were irradiated with
UV (80 mJ/cm3) using a UV crosslinker, and then incubated for 24 h
untreated or treated with the Rh2 extract.
2.9. Total antioxidant capacity assay

Cells were washed tree times with cold-PBS and then homog-
enized with 100 mL of 60 mM NaOH. The homogenates were
centrifuged at 300 rpm for 15 min, and the supernatant was used
for analysis (Cell-biolabs, CA, USA). Uric acid and BHT, known as
standards, or samples were dispensed in a 96-well plate, and 180 mL
of 1X reaction buffer was added to each well. The concentrations of
Uric acid and BHT proceeded the same as the Rh2 concentration.
After reading the plate at an absorbance of 490 nm, the reaction
was initiated and 50 mL of Copper Ion reagent was added to each
well. Then, incubated for 5 min in an orbital shaker. Terminate the
reaction by adding 50 mL of 1X stop solution and read the platewith
the same absorbance.
2.10. Confocal imaging analysis

NHDF cells were incubated on glass coverslips until about 70%
confluency. And NHDF cells were transfected the pDsRed2-Mito
and GFP-LC3 plasmid using JetPEI reagents. Confocal analysis was
performed as previously described [24,25].
2.11. Measurement of ATP levels in subcellular compartments

ATP produced by mitochondria was measured in the same way
as previously described [27]. That is, until the value of lumines-
cence reached the maximum value, it was measured at 5 s intervals
using a luminometer. To normalize the expression of luciferase in
the transfected cells, the luminescence value of each cell was ob-
tained using a luciferase assay kit (Promega, Madison, WI, USA).
This was expressed as a ratio to luminescence measured in cells
lysed using the same amount of reagent.
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2.12. Measurement of mitochondria membrane potential (DJm)

After irradiating the NHDF cells with UV at 80 mJ/cm3, and
untreated or treated Rh2 extract at 1, 10, 50 mM. As a control, NHDF
cells not irradiated with UV were treated Carbonyl cyanide 3-
chlorophenylhydrazone (CCCP) for 8 h. Cells were stained with
2 mM JC-1 dye for 30 min to measure the mitochondrial trans-
membrane potential using flow cytometry. At this time, at least
10,000 cells were analyzed for each sample.

2.13. Statistical analysis

Statistical analysis was performed as previously described [28].

3. Results

3.1. Effect of Rh2 on cell proliferation and wound-healing in NHDF
cells

NHDF cells were treated with 1, 10, 50, 100, 200, or 400 mM Rh2
extract for 24 h. Treatment with 50 mM Rh2 extract did not exhibit
cytotoxicity compared with untreated cells, but cytotoxicity was
observed at doses >50 mM (Fig. 1A). Therefore, all subsequent ex-
periments were performed at a maximum dose of 50 mM Rh2
extract. To investigate the anti-apoptotic effect of RH2, apoptosis
was induced in NHDF cells by exposure to 80 mJ/cm3 of UV [24].
In vitro cell proliferation assays showed that Rh2 extract increased
NHDF cell proliferation in a dose-dependent manner (Fig. 1B).
Wound-healing assays were performed by exposing confluent
monolayers of NHDF cells to UV irradiation, followed by treatment
with Rh2 for 24 h. The wounds have rapidly recovered in a Rh2
concentration-dependent manner (Fig. 1C and D). Taken together,
these data suggest that Rh2 has a recovery function in UV-
irradiated skin cells.

3.2. Effects of Rh2 on cell development and protection effect against
UV exposure in NHDF cells

Protein kinase B (PKB)/AKT, which is known to be activated by
growth factors or insulin, plays a central role in this signaling
pathway. In addition, it is known to regulate cellular processes such
as cell proliferation, angiogenesis, transcription, nutrient meta-
bolism, apoptosis and cell growth [29]. Full activation of PKB/AKT is
induced by the phosphorylation of Ser473 and Thr308 [30,31]. A
previous study showed that PKB/AKT phosphorylationwas induced
in mouse epidermal cells that had been exposed to UV irradiation,
indicating a relationship between UV exposure and the PKB/AKT
pathway [32].

After UV exposure to NHDF cells, the Rh2 extract was incubated
for 24 h treated or untreated. Then, the protein extract of NHDF
cells was analyzed by Western blot. The results showed that the
pERK (T44/T42) and PKB (S473) expression levels were significantly
increased by treatment with Rh2 extract, in a dose-dependent
manner (Fig. 2A and B). In previous studies, it is known that the
growth factor receptors of Src and Ras-MEK-MAPK are also acti-
vated by UV exposure. The UV exposure to HaCaT cells, a human
keratinocyte cell line, altered the nuclear translocation of the
epidermal growth factor receptor (EGFR) and changed the structure
of the EGF binding site [33]. This results indicate that the expression
of TNFR1, EGFR and pp38 proteins increased by UV exposure was
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reduced by the Rh2 extract. Additionally, the expression of cleaved
caspase 3, a marker of apoptosis, was reduced by Rh2 extract
(Fig. 2C and D). Taken together, these observations suggested that
Rh2 extract suppresses UV-induced increases in the expression of
several growth-related genes.
3.3. Rh2 affects the expression of ECM-related genes in UV exposure
NHDF cells

The components of the ECM regulate cellular structure via
intercellular communication, cell adhesion, and differentiation; a
balanced arrangement of ECM components is important for sup-
porting the skin [34]. Dermal ECM is mainly composed of fibrinous
collagen and elastic fibers, which are synthesized by fibroblasts.
These ECMs provide elasticity and strength to the skin [35]. The
ECM is regulated under normal physiological conditions, but dis-
orders can lead to chronic inflammation and diseases (e.g., cancer)
[34].

Collagen, a component of the ECM, is a structural protein pri-
marily found in connective tissues, such as cartilage, bone, tendon,
ligament, and skin. As the main component of connective tissue,
collagen is the most abundant protein, constituting 25%e35% of the
total protein in the body. Collagen combines with amino acids to
form a triple helix of long helical fibrils [36e41].

The main function of elastin is to restore the shape of contracted
or stretched tissue, which is known as a stretchable protein; similar
to collagen, elastin is mainly present in connective tissue. In addi-
tion, elastin is present as a structural protein in load-bearing tissues
in vertebrates [42e44].

Matrix metalloproteinase (MMPs) are involved in tissue
remodeling, such as arthritis and tumor metastasis, as well as in
many physiological processes. MMP-3 breaks down collagen,
fibronectin, and elastin; it may also activate other MMPs that are
important for connective tissue remodeling. This enzyme is known
to be mainly involved in tumor initiation and progression of
atherosclerosis [45].

We confirmed ECM protein expression in Rh2-treated cells after
UV exposure. Our data showed that elastin expression was
increased by Rh2 in a dose-dependent manner, whereas MMP-3
levels were decreased (Fig. 3A and B). Notably, the collagen I pro-
tein level was not affected by Rh2 extract (Fig. 3A). The MMP-3
protein level increased after UV irradiation compared with the
normal state, but it was reduced by Rh2 treatment in a dose-
dependent manner after UV irradiation (Fig. 3A and B). Next, we
performed real-time quantitative reverse transcription PCR (qRT-
PCR) analysis to determine the expression levels of several mRNAs
that encode ECM proteins in untreated or treated Rh2 cells after UV
exposure. After UV irradiation, the basal expression levels of
collagen, elastin, and COL1A1 were decreased, but the effect on
elastin expression was ameliorated by Rh2 treatment in a
concentration-dependent manner, although the level of expression
remained significantly lower than in nonirradiated controls (Fig. 3C
and D). There were no significant differences in collagen or COL1A1
mRNA levels between Rh2-treated and untreated cells after UV
irradiation (Fig. 3D, F). Whereas, the expression levels of MMP-2
was decreased after treatment of Rh2 (Fig. 3E). The results of
mRNA expression analyses were thus similar to the results of pro-
tein expression analyses; they suggested that Rh2 treatment would
have protective effects in UV-irradiated cells.



Fig. 1. Cell viability and Cell proliferation assay. (A) Rh2 extract showed no cytotoxicity at 1, 10 or 50 mM in EZ-Cyto assay using NHDF cells. (B) Proliferation of Rh2-treated NHDF
cells were measured for 120 h using the xCELLigence system. (C) Cell wound healing assay was performed 24 h on UV-irradiated cells after scratching. UV-irradiated NHDF cells
were further treated with Rh2 extract in a dose-dependent manner. (D) Relative proportions of wound sizes. Results are presented as mean ± SD of three independent experiments.
*p < 0.05, **p < 0.01.
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3.4. Treatment with Rh2 extract affected antioxidant levels after UV
irradiation in NHDF cells

The generation of ROS is triggered by the environment as well as
cellular processes, such as aging, apoptosis, and metabolism. An-
tioxidants protect against UV-induced skin damage. The ROS
removal system consists of antioxidants and antioxidant enzymes
[46]. In the present study, fluorescence-activated cell sorting (FACS)
analysis showed a decrease in ROS production in Rh2-treated cells,
compared with untreated controls (Fig. 4A). The antioxidant ac-
tivity was examined after confirming the decreases in ROS levels by
Rh2. The results indicated that the antioxidant activity was
increased by Rh2 to an extent similar to the findings in uric acid and
BHT-positive controls; the UV-induced reduction of total
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antioxidant capacity was increased by Rh2 in a dose-dependent
manner (Fig. 4B). These results suggest that Rh2 inhibits in skin
cells from UV by reducing the production of ROS.

Nuclear factor erythroid 2-related factor 2 (NRF2) increases
antioxidant potential and inhibits oxidative stress [47]. In a previ-
ous study, the UV irradiation of human corneal endothelial cells
induced antioxidant defense mechanisms involving increased
expression of NRF2 at both transcriptional and translational levels
[47]. Furthermore, NRF2 regulated antioxidant activity by
increasing the expression of HO-1 in UV-irradiated cells [48]. Here,
the protein expression levels of NRF2, which is related to antioxi-
dant defense, and HO-1, which acts downstream of NRF2, were
investigated in UV-irradiated NHDF cells (Fig. 4B). Upon Rh2
treatment, the UV-induced reductions of NRF2 and HO-1 protein



Fig. 2. Expression of proteins involved in cell development and proliferation using Western blotting. (A, C) Proteins extracted from untreated cells or Rh2 extract-treated cells
were treated with several antibodies (extracellular signal-regulated kinase (ERK), phosphorylated ERK2, protein kinase (PKB), phosphorylated PKB, tumor necrosis factor receptor 1
(TNFR1), epidermal growth factor receptor (EGRF), analyzed by western blotting using phosphorylated p38, cleaved caspase 3, and caspase 3). (B, D) Antibodies (ERK, pERK, PKB,
pPKB, TNFR1, EGFR, and pp38) were quantified by Western blot analysis, as described in the Materials and Methods. The values are means ± SD of three independent experiments.
Significant difference from negative control (Non UV irradiated) *, p < 0.05 and **, p < 0.01. Significant difference from positive control (UV irradiated) #, p < 0.05 and ##, p < 0.01.
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expression levels were restored to levels similar to the findings in
nonirradiated control cells (Fig. 4C and D). These results indicated
that treatment with Rh2 increases the expression of RNF2 and HO-
1.
3.5. Rh2 restores the morphology and function of mitochondria
damaged by UV irradiation in NHDF cells

Mitochondrial fission and fusion occur in various organisms,
including yeast, flies, and mammals; they are mediated by guano-
sine triphosphate (GTPase) [49]. Fission is mediated by the
650
cytoplasmic dynamin family member, DRP1, which forms a helix
around mitochondria and cleaves the inner and outer membranes.
Mitochondrial fission begins with the division of the inner and
outer membranes [50]. In mitochondrial fusion, the outer and inner
membranes are induced separately. Fusion between the outer
membranes is initiated by the membrane-anchored dynamin
family members MFN1 and MFN2. Inner membrane fusion is
mediated by a single dynamin family member, Opa1 [51,52]. UV
irradiation decreased the expression levels of fusion-related pro-
teins and increased the expression levels of fission-related proteins.
However, treatment with Rh2 ameliorated these changes in protein



Fig. 3. Expression levels of extracellular matrix mRNA and protein. (A) Total protein levels of ECM (Collagen I, Elastin, and MMP3) in non-treated and Rh2 treated cell on UV
irradiation. (B) The immunoblotting were quantified by Western analyses, as described in Methods. Bar heights are means ± S.D. of three independent experiments. Significant
difference from negative control (Non UV irradiated) *, p < 0.05 and **, p < 0.01. Significant difference from positive control (UV irradiated) #, p < 0.05 and ##, p < 0.01. (C, D, E, F)
mRNA expression levels of ECM related genes in non-treated cells and Rh2 treated cell on UV irradiation.
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expression. The levels of fusion-related proteins, such asMFN2, was
increased in Rh2-treated cells comparedwith untreated controls. In
addition, the levels of the mitochondrial fission-related proteins,
pDRP1(S616), Fis1, and MFF, were decreased in Rh2-treated cells
(Fig. 5A and B). However, the level of pKRP1 (S637), one of the
fiction-related proteins, tended to be increased by Rh2. Confocal
microscopy analyses of cells exposed to UV irradiation were per-
formed to examine mitochondrial morphology; the results were
similar to the findings after treatment with CCCP, a mitochondrial
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uncoupler that induces mitochondrial autophagy (mitophagy). The
fragmented mitochondria in UV-treated cells changed to a tubular
form in cells that had been treated with Rh2 at 10 mM and 50 mM
(Fig. 5C). These results show that Rh2 extract affects mitochondrial
dynamics. Mitochondrial membrane potential decreased by UV
exposure in NHDF cells was increased by Rh2 treatment (Fig. 5E).
After UV irradiation, mitochondrial membrane potential and
mitochondrial ATP level were significantly increased in Rh2-treated
cells, compared with untreated control (Fig. 5D and E). These



Fig. 4. Rh2 decreases ROS production through antioxidant effects. (A) For ROS measurement of H2O2, 2 0 , 70-dichlorodehydrofluorosine diacetate (CM-H2DCFDA) was used. (B)
Total antioxidant activity was indicated by measuring the absorbance at 490 nm after treatment with the Rh2 extract. Uric acid and BHT (butylated hydroxytoluene) were used as
controls. *p < 0.05; **p < 0.01, versus between BHT samples; #p < 0.05, ##p < 0.01, versus between Uric acid samples; $$p < 0.01, versus between Rh2 (C) Protein level of HO-1, NRF2
from UV exposed Rh2 treated samples by western blotting analysis. (D) Graphical representation. Significant difference from negative control (Non UV irradiated) *, p < 0.05 and **,
p < 0.01. Significant difference from positive control (UV irradiated) ##, p < 0.01.
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observations suggested that Rh2 extract induces mitochondrial
fusion and the recovery of mitochondrial function in UV-irradiated
dermal fibroblast cells.
3.6. Rh2 inhibits mitophagy induced by UV irradiation

Damagedmitochondria are removed tomaintain homeostasis in
the body through an autophagic process known as mitophagy,
which is mediated by the PINK1-Parkin signaling pathway. PINK1
and parkin physically interact, and the mitochondrial potential of
parkin is dependent on PINK1 [53e56]. PINK1 is localized in the
intermembrane space or the outer membrane of mitochondria.
652
When mitochondria are damaged and the membrane potential is
reduced, PINK1 in the intermembrane space binds to the outer
membrane of the mitochondria. Parkin then binds to PINK1 and
causes fusion of the lysosome and autophagosome (similar to
autophagy), eventually leading to mitochondrial degradation [57].

To assess the anti-mitophagy effect of Rh2, NHDF cells were
induced to undergo mitophagy by exposure to UV irradiation at a
dose of 80 mJ/cm3; time-dependent changes in PINK1 and Parkin
protein expression levels were examined by Western blotting
(Fig. 6A). Based on the results, subsequent experiments were per-
formed using UV irradiation at a dose of 80 mJ/cm3 for 3 min.
Mitophagy induced by UV exposure was inhibited by Rh2



Fig. 5. Changes the mitochondria morphology and function Rh2 treatment after UV irradiation. (A) The expression levels of Fission (Drp1, Fis1, and MFF) and Fusion (Opa1 and
MFN2) protein in untreated and treated of Rh2 cell line after UV exposure (B) Graphical representation. Significant difference from negative control (Non UV irradiated) *, p < 0.05
and **, p < 0.01. Significant difference from positive control (UV irradiated) #, p < 0.05 and ##, p < 0.01. (C) Image of Mito-red staining from control samples (non-UV exposure) and
UV exposed Rh2 treated samples. Scale bars, 10 mm or 5 mm (D) ATP of mitochondria (E) Mitochondrial membrane potential (DJm; mitochondrial respiratory capacity) from control
samples (non-UV exposure) and UV exposed Rh2 treated samples. Significant difference from negative control (Non UV irradiated) *, p < 0.05 and **, p < 0.01. Significant difference
from positive control (UV irradiated) #, p < 0.05 and ##, p < 0.01.
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treatment in a dose-dependent manner. The UV-induced increases
in Parkin and PINK1 expression levels were decreased by Rh2
treatment; the expression of LC3-II, an autophagy marker, was
significantly decreased. These results were also confirmed by
confocal microscopy; LC3 puncta were also reduced by Rh2 treat-
ment (Fig. 6B and C). These observations suggested that Rh2 in-
hibits UV-induced mitophagy.
4. Discussion

Ginseng is a widely used herbal medicine; various pharmaco-
logically active ginsenoside components have been reported and
653
are used in cosmetics and health foods. Rh2 is a ginsenoside that
has antioxidant effects on human keratinocytes and dermal fibro-
blasts. To our knowledge, there have been no previous reports of
the relationships between UV-damaged mitochondria and Rh2 or
the inhibitory effect of Rh2 against mitophagy in dermal fibroblasts.
Here, we analyzed various beneficial effects of Rh2 extract in UV-
exposed NHDF cells, including inhibitory effects on skin aging,
antioxidant effects, the recovery of mitochondrial function, and the
inhibition of mitophagy.

When the skin is exposed to UV, large amounts of ROS are
produced in the mitochondria, which induces oxidative stress
leading to mitochondrial damage. Treatment of UV-irradiated



Fig. 6. Rh2 inhibits mitophagy in UV-irradiated NHDF cells. (A) Induction of mitophagy was measured by western blotting analysis with anti-PINK1 and anti-parkin antibodies
after UV irradiation of 80 mJ/cm3 for time-dependent manner. (B) The expression level of mitophagy related protein and autophagy protein in Rh2-treated cell line after UV
exposure. (C) Image of MitoRed and GFP-LC3 staining from UV-exposed Rh2-treate samples. Scale bars, 10 mm or 5 mm.
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NHDF cells with Rh2 extract increased ECM protein levels such as
elastin. However, it reduced the levels of proteins involved in the
inhibition of collagen synthesis, such asMMP-2 andMMP-3 (Fig. 3).
Notably, Rh2 extract had no effects on the expression of the ECM
protein, collagen. However, treatment with Rh2 extract amelio-
rated the UV-induced decrease in the level of elastin expression.
Previously, we demonstrated that the ginsenoside, RG3, increased
the protein expression levels of collagen, elastin, and COL1A1 that
had been decreased by UV exposure [24]. Pathways that influence
the effects of RG3 and Rh2 are presumably different. Because the
only ECM-related protein recovered by Rh2 was elastin, the
mechanism of action of Rh2 is potentially limited to the elastin
synthesis pathway and may have no effect on the collagen
654
synthesis pathway. Further research is needed to determine the
interaction between Rh2 and elastin synthesis.

Rh2 also decreased oxidative stress by increasing the expression
of antioxidant genes (Fig. 4), thereby reducing the generation of
ROS by UV exposure. In addition, Rh2 inhibited UV-mediated
mitophagy and restored the functions of mitochondria that had
been reduced by UV damage (Figs. 5 and 6). Taken together, the
findings in this study constitute clear in vitro evidence that Rh2
plays a positive role in UV-irradiated NHDF cells by protecting
mitochondrial structure and function. Several studies have shown
that Rh2 contributes to dermal fibroblast and keratinocyte regen-
eration; it also has antioxidant activities. This study demonstrated
that Rh2 targets mitochondria and regulates the generation of ROS;
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these findings will be useful in developing both methods for pro-
tection against UV and novel treatment strategies.
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