DOI QR코드

DOI QR Code

Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization

  • Pan, Haixia (Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China) ;
  • Yang, Linhan (Outpatient Department, Chengdu Aurora Huan Hua Xiang) ;
  • Bai, Hansong (Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China) ;
  • Luo, Jing (Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China) ;
  • Deng, Ying (Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China)
  • Received : 2021.05.04
  • Accepted : 2021.08.18
  • Published : 2022.09.01

Abstract

Background: Ginsenoside Rg3 and gemcitabine have mutual enhancing antitumor effects. However, the underlying mechanisms are not clear. This study explored the influence of ginsenoside Rg3 on Zinc finger protein 91 homolog (ZFP91) expression in pancreatic adenocarcinoma (PAAD) and their regulatory mechanisms on gemcitabine sensitivity. Methods: RNA-seq and survival data from The Cancer Genome Atlas (TCGA)-PAAD and Genotype-Tissue Expression (GTEx) were used for in-silicon analysis. PANC-1, BxPC-3, and PANC-1 gemcitabine-resistant (PANC-1/GR) cells were used for in vitro analysis. PANC-1 derived tumor xenograft nude mice model was used to assess the influence of ginsenoside Rg3 and ZFP91 on tumor growth in vivo. Results: Ginsenoside Rg3 reduced ZFP91 expression in PAAD cells in a dose-dependent manner. ZFP91 upregulation was associated with significantly shorter survival of patients with PAAD. ZFP91 overexpression induced gemcitabine resistance, which was partly conquered by ginsenoside Rg3 treatment. ZFP91 depletion sensitized PANC-1/GR cells to gemcitabine treatment. ZFP91 interacted with Testis-Specific Y-Encoded-Like Protein 2 (TSPYL2), induced its poly-ubiquitination, and promoted proteasomal degradation. Ginsenoside Rg3 treatment weakened ZFP91-induced TSPYL2 poly-ubiquitination and degradation. Enforced TSPYL2 expression increased gemcitabine sensitivity of PAAD cells and partly reversed induced gemcitabine resistance in PANC-1/GR cells. Conclusion: Ginsenoside Rg3 can increase gemcitabine sensitivity of pancreatic adenocarcinoma at least via reducing ZFP91 mediated TSPYL2 destabilization.

Keywords

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin 2020;70(1):7-30. https://doi.org/10.3322/caac.21590. Epub 2020/01/09PubMed PMID: 31912902.
  2. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med 2014;371(11):1039-49. https://doi.org/10.1056/NEJMra1404198. Epub 2014/09/11 PubMed PMID: 25207767.
  3. Sarvepalli D, Rashid MU, Rahman AU, Ullah W, Hussain I, Hasan B, et al. Gemcitabine: a review of chemoresistance in pancreatic cancer. Crit Rev Oncog 2019;24(2):199-212. https://doi.org/10.1615/CritRevOncog.2019031641. Epub 2019/11/05 PubMed PMID: 31679214.
  4. Liu T, Zuo L, Guo D, Chai X, Xu J, Cui Z, et al. Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed Pharmacother 2019;120:109483. https://doi.org/10.1016/j.biopha.2019.109483. Epub 2019/10/20 PubMed PMID: 31629252.
  5. Oh J, Yoon HJ, Jang JH, Kim DH, Surh YJ. The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling. J Ginseng Res 2019;43(3):421-30. https://doi.org/10.1016/j.jgr.2018.05.004. Epub 2019/07/17 PubMed PMID: 31308814; PubMed Central PMCID:PMCPMC6606826.
  6. Jiang J, Yuan Z, Sun Y, Bu Y, Li W, Fei Z. Ginsenoside Rg3 enhances the antiproliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 2017;96:619-25. https://doi.org/10.1016/j.biopha.2017.10.043. Epub 2017/10/17 PubMed PMID: 29035827.
  7. Zou J, Su H, Zou C, Liang X, Fei Z. Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling. J Biochem Mol Toxicol 2020;34(6):e22480. https://doi.org/10.1002/jbt.22480. Epub 2020/02/28 PubMed PMID:32104955.
  8. Saotome Y, Winter CG, Hirsh D. A widely expressed novel C2H2 zinc-finger protein with multiple consensus phosphorylation sites is conserved in mouse and man. Gene 1995;152(2):233-8. https://doi.org/10.1016/0378-1119(94)00717-7. Epub 1995/01/23 PubMed PMID: 7835706.
  9. Jin X, Jin HR, Jung HS, Lee SJ, Lee JH, Lee JJ. An atypical E3 ligase zinc finger protein 91 stabilizes and activates NF-kappaB-inducing kinase via Lys63-linked ubiquitination. J Biol Chem 2010;285(40):30539-47. https://doi.org/10.1074/jbc.M110.129551. Epub 2010/08/05 PubMed PMID: 20682767; PubMed Central PMCID: PMCPMC2945548.
  10. Tang DE, Dai Y, Xu Y, Lin LW, Liu DZ, Hong XP, et al. The ubiquitinase ZFP91 promotes tumor cell survival and confers chemoresistance through FOXA1 destabilization. Carcinogenesis 2020;41(1):56-66. https://doi.org/10.1093/carcin/bgz085. Epub 2019/05/03 PubMed PMID: 31046116.
  11. Ma J, Mi C, Wang KS, Lee JJ, Jin X. Zinc finger protein 91 (ZFP91) activates HIF1 alpha via NF-kappaB/p65 to promote proliferation and tumorigenesis of colon cancer. Oncotarget 2016;7(24):36551-62. https://doi.org/10.18632/oncotarget.9070. Epub 2016/05/05 PubMed PMID: 27144516; PubMed Central PMCID: PMCPMC5095020.
  12. Epping MT, Lunardi A, Nachmani D, Castillo-Martin M, Thin TH, CordonCardo C, et al. TSPYL2 is an essential component of the REST/NRSF transcriptional complex for TGFbeta signaling activation. Cell Death Differ 2015;22(8):1353-62. https://doi.org/10.1038/cdd.2014.226. Epub 2015/01/24 PubMed PMID: 25613376; PubMed Central PMCID: PMCPMC4495358.
  13. Tu Y, Wu W, Wu T, Cao Z, Wilkins R, Toh BH, et al. Antiproliferative autoantigen CDA1 transcriptionally up-regulates p21(Waf1/Cip1) by activating p53 and MEK/ERK1/2 MAPK pathways. J Biol Chem 2007;282(16):11722-31. https://doi.org/10.1074/jbc.M609623200. Epub 2007/02/24 PubMed PMID:17317670.
  14. Qin S, Liu D, Kohli M, Wang L, Vedell PT, Hillman DW, et al. TSPYL family regulates CYP17A1 and CYP3A4 expression: potential mechanism contributing to abiraterone response in metastatic castration-resistant prostate cancer. Clin Pharmacol Ther 2018;104(1):201-10. https://doi.org/10.1002/cpt.907. Epub 2017/10/14 PubMed PMID: 29027195; PubMed Central PMCID: PMCPMC5899062.
  15. Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 2020;38(6):675-8. https://doi.org/10.1038/s41587-020-0546-8. Epub 2020/05/24 PubMed PMID: 32444850.
  16. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science 2017;357(6352):eaan2507. https://doi.org/10.1126/science.aan2507. Epub 2017/08/19 PubMed PMID:28818916.
  17. Xia W, Bai H, Deng Y, Yang Y. PLA2G16 is a mutant p53/KLF5 transcriptional target and promotes glycolysis of pancreatic cancer. J Cell Mol Med 2020;24(21):12642-55. https://doi.org/10.1111/jcmm.15832. Epub 2020/09/29 PubMed PMID: 32985124; PubMed Central PMCID: PMCPMC7686977.
  18. Kim ST, Lim DH, Jang KT, Lim T, Lee J, Choi YL, et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol Canc Therapeut 2011;10(10): 1993-9. https://doi.org/10.1158/1535-7163.MCT-11-0269. Epub 2011/08/25PubMed PMID: 21862683.
  19. Kang YW, Lee JE, Jung KH, Son MK, Shin SM, Kim SJ, et al. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Canc Lett 2018;438:174-86. https://doi.org/10.1016/j.canlet.2018.09.013. Epub 2018/09/16 PubMed PMID: 30217561.
  20. Brown WS, McDonald PC, Nemirovsky O, Awrey S, Chafe SC, Schaeffer DF, et al. Overcoming adaptive resistance to KRAS and MEK inhibitors by Cotargeting mTORC1/2 complexes in pancreatic cancer. Cell Rep Med 2020;1(8):100131. https://doi.org/10.1016/j.xcrm.2020.100131. Epub 2020/12/10 PubMed PMID: 33294856; PubMed Central PMCID: PMCPMC7691443.
  21. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, et al. A reference map of the human binary protein interactome. Nature 2020;580(7803): 402-8. https://doi.org/10.1038/s41586-020-2188-x. Epub 2020/04/17 PubMed PMID: 32296183; PubMed Central PMCID: PMCPMC7169983.
  22. Chen Wang Y, Lu R, Jiang X, Chen X, Meng N, et al. E3 ligase ZFP91 inhibits Hepatocellular Carcinoma Metabolism Reprogramming by regulating PKM splicing. Theranostics 2020;10(19):8558-72. https://doi.org/10.7150/thno.44873. Epub 2020/08/06 PubMed PMID: 32754263; PubMed Central PMCID: PMCPMC7392027.
  23. Kandalaft LE, Zudaire E, Portal-Nunez S, Cuttitta F, Jakowlew SB. Differentially expressed nucleolar transforming growth factor-beta 1 target (DENTT) exhibits an inhibitory role on tumorigenesis. Carcinogenesis 2008;29(6): 1282-9. https://doi.org/10.1093/carcin/bgn087. Epub 2008/04/03 PubMed PMID: 18381359; PubMed Central PMCID: PMCPMC2902398.
  24. Alzahrani AM, Rajendran P. The multifarious link between cytochrome P450s and cancer. Oxid Med Cell Longev 2020;2020:3028387. https://doi.org/10.1155/2020/3028387. Epub 2020/01/31 PubMed PMID: 31998435; PubMed Central PMCID: PMCPMC6964729.
  25. Subhani S, Jamil K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed Pharmacother 2015;73:65-74. https://doi.org/10.1016/j.biopha.2015.05.018. Epub 2015/07/28 PubMed PMID:26211584.
  26. Noll EM, Eisen C, Stenzinger A, Espinet E, Muckenhuber A, Klein C, et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat Med 2016;22(3):278-87. https://doi.org/10.1038/nm.4038. Epub 2016/02/09 PubMed PMID: 26855150;PubMed Central PMCID: PMCPMC4780258.
  27. Zhou YD, Hou JG, Liu W, Ren S, Wang YP, Zhang R, et al. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int Immunopharm 2018;59:21-30. https://doi.org/10.1016/j.intimp.2018.03.030. Epub 2018/04/06 PubMed PMID: 29621733.