DOI QR코드

DOI QR Code

Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx

  • Li, Suping (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Yu, Nengwei (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Xu, Fei (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Yu, Liang (Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Yu, Qian (Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital) ;
  • Fu, Jing (Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital)
  • Received : 2022.02.14
  • Accepted : 2022.05.12
  • Published : 2022.09.01

Abstract

Background: Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method: Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results: Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion: Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.

Keywords

Acknowledgement

This study was supported by the Key Research Project of the Science & Technology Department of Sichuan Province, China (2021YFS0131 and 2020YFS0414).

References

  1. Chen YY, Liu QP, An P, Jia M, Luan X, Tang JY, et al. Ginsenoside Rd: a promising natural neuroprotective agent. Phytomedicine 2022;95:153883. https://doi.org/10.1016/j.phymed.2021.153883. Epub 2021/12/25PubMedPMID: 34952508.
  2. Ye R, Zhao G, Liu X. Ginsenoside Rd for acute ischemic stroke: translating from bench to bedside. Expert Rev Neurother 2013;13(6):603-13. https://doi.org/10.1586/ern.13.51. Epub 2013/06/07PubMed PMID: 23738998.
  3. Hurd MD, Goel I, Sakai Y, Teramura Y. Current status of ischemic stroke treatment: from thrombolysis to potential regenerative medicine. Regen Ther 2021;18:408-17. https://doi.org/10.1016/j.reth.2021.09.009. Epub 2021/11/02PubMed PMID: 34722837; PubMed Central PMCID: PMCPMC8517544.
  4. Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, et al. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for Healthcare professionals from the American heart association/American stroke association. Stroke 2017;48(12):e343-61. https://doi.org/10.1161/STR.0000000000000152. Epub 2017/11/04PubMed PMID: 29097489.
  5. Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, et al. Endothelial targets in stroke: translating animal models to human. Arterioscler Thromb Vasc Biol 2019;39(11):2240-7. https://doi.org/10.1161/ATVBAHA.119.312816. Epub 2019/09/13PubMed PMID: 31510792; PubMed Central PMCID: PMCPMC6812626.
  6. Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, et al. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013;4:152. https://doi.org/10.3389/fphar.2013.00152. Epub 2014/01/01PubMed PMID:24376419; PubMed Central PMCID: PMCPMC3858668.
  7. Hu G, Wu Z, Yang F, Zhao H, Liu X, Deng Y, et al. Ginsenoside Rd blocks AIF mitochondrio-nuclear translocation and NF-kappaB nuclear accumulation by inhibiting poly(ADP-ribose) polymerase-1 after focal cerebral ischemia in rats. Neurol Sci 2013;34(12):2101-6. https://doi.org/10.1007/s10072-013-1344-6. Epub 2013/03/07PubMed PMID: 23463404.
  8. Hu J, Zeng C, Wei J, Duan F, Liu S, Zhao Y, et al. The combination of Panax ginseng and Angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis. Phytomedicine 2020;76:153251. https://doi.org/10.1016/j.phymed.2020.153251. Epub 2020/06/13PubMed PMID: 32531700.
  9. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, et al. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 2011;178:169-80. https://doi.org/10.1016/j.neuroscience.2011.01.007. Epub 2011/01/12PubMed PMID: 21219973.
  10. Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res 2015;39(4):299-303. https://doi.org/10.1016/j.jgr.2015.02.002. Epub 2016/02/13PubMed PMID:26869821; PubMed Central PMCID: PMCPMC4593783.
  11. Zhang B, Hu X, Wang H, Wang R, Sun Z, Tan X, et al. Effects of a dammaranetype saponin, ginsenoside Rd, in nicotine-induced vascular endothelial injury. Phytomedicine 2020;79:153325. https://doi.org/10.1016/j.phymed.2020.153325. Epub 2020/09/14PubMed PMID: 32920289.
  12. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom 2015;20(2):107-26. https://doi.org/10.1177/2211068214561025. Epub 2015/01/15PubMed PMID: 25586998; PubMed Central PMCID: PMCPMC4652793.
  13. Hu S, Wu Y, Zhao B, Hu H, Zhu B, Sun Z, et al. Panax notoginseng saponins protect cerebral microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced barrier dysfunction via activation of PI3K/Akt/Nrf 2 antioxidant signaling pathway. Molecules 2018;23(11). https://doi.org/10.3390/molecules23112781. Epub 2018/10/31PubMed PMID:30373188; PubMed Central PMCID: PMCPMC6278530.
  14. Li S, Fu J, Wang Y, Hu C, Xu F. LncRNA MIAT enhances cerebral ischaemia/reperfusion injury in rat model via interacting with EGLN2 and reduces its ubiquitin-mediated degradation. J Cell Mol Med 2021;25(21):10140-51. https://doi.org/10.1111/jcmm.16950. Epub 2021/10/24PubMed PMID:34687132; PubMed Central PMCID: PMCPMC8572800.
  15. Peng Y, Zhang X, Zhang T, Grace PM, Li H, Wang Y, et al. Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain Behav Immun 2019;82:432-44. https://doi.org/10.1016/j.bbi.2019.09.013. Epub 2019/09/23PubMed PMID: 31542403.
  16. Li H, Jiang W, Ye S, Zhou M, Liu C, Yang X, et al. P2Y14 receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis 2020;11(5):394. https://doi.org/10.1038/s41419-020-2609-7. Epub 2020/05/28PubMed PMID: 32457291; PubMed Central PMCID:PMCPMC7250907.
  17. Scambler T, Jarosz-Griffiths HH, Lara-Reyna S, Pathak S, Wong C, Holbrook J, et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. Elife 2019;8. https://doi.org/10.7554/eLife.49248. Epub 2019/09/19PubMed PMID: 31532390; PubMed Central PMCID:PMCPMC6764826.
  18. Yao ZJ, Dong J, Che YJ, Zhu MF, Wen M, Wang NN, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multitarget SAR models. J Comput Aided Mol Des 2016;30(5):413-24. https:// doi.org/10.1007/s10822-016-9915-2. Epub 2016/05/12PubMed PMID:27167132.
  19. Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y. Cb-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol Sin 2020;41(1):138-44. https://doi.org/10.1038/s41401-019-0228-6. Epub 2019/07/03PubMed PMID: 31263275; PubMed Central PMCID: PMCPMC7471403.
  20. Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, et al. Focusing on claudin-5: a promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 2018;161:79-96. https://doi.org/10.1016/j.pneurobio.2017.12.001. Epub2017/12/09PubMed PMID: 29217457.
  21. Wang Y, Guan X, Gao CL, Ruan W, Zhao S, Kai G, et al. Medioresinol as a novel PGC-1 alpha activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARalpha-GOT1 axis. Pharmacol Res 2021;169:105640. https://doi.org/10.1016/j.phrs.2021.105640. Epub 2021/04/30PubMed PMID:33915296.
  22. Yamazaki Y, Ogihara S, Harada S, Tokuyama S. Activation of cerebral sodiumglucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. Neuroscience 2015;310:674-85. https://doi.org/10.1016/j.neuroscience.2015.10.005. Epub 2015/10/11PubMed PMID: 26454021.
  23. Elfeber K, Stumpel F, Gorboulev V, Mattig S, Deussen A, Kaissling B, et al. Na(+)-D-glucose cotransporter in muscle capillaries increases glucose permeability. Biochem Biophys Res Commun 2004;314(2):301-5. https://doi.org/10.1016/j.bbrc.2003.12.090. Epub 2004/01/22PubMed PMID:14733905.
  24. Yamazaki Y, Harada S, Wada T, Hagiwara T, Yoshida S, Tokuyama S. Sodium influx through cerebral sodium-glucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage. Eur J Pharmacol 2017;799:103-10. https://doi.org/10.1016/j.ejphar.2017.02.007. Epub 2017/02/09PubMed PMID: 28174043.
  25. Hirayama BA, Loo DD, Diez-Sampedro A, Leung DW, Meinild AK, Lai-Bing M, et al. Sodium-dependent reorganization of the sugar-binding site of SGLT1. Biochemistry 2007;46(46):13391-406. https://doi.org/10.1021/bi701562k.Epub 2007/10/27PubMed PMID: 17960916.
  26. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011;91(2):733-94. https://doi.org/10.1152/physrev.00055.2009. Epub 2011/04/30PubMed PMID: 21527736.
  27. Jin S, Jeon JH, Lee S, Kang WY, Seong SJ, Yoon YR, et al. Detection of 13 ginsenosides (Rb1, Rb2, rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in human plasma and application of the analytical method to human pharmacokinetic studies following two week-repeated administration of red ginseng extract. Molecules 2019;24(14). https://doi.org/10.3390/molecules24142618. Epub 2019/07/22PubMed PMID: 31323835; PubMed Central PMCID: PMCPMC6680484.
  28. Choi MK, Jin S, Jeon JH, Kang WY, Seong SJ, Yoon YR, et al. Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings. J Ginseng Res 2020;44(2):229-37. https://doi.org/10.1016/j.jgr.2018.10.006. Epub 2020/03/10PubMed PMID: 32148404; PubMed Central PMCID:PMCPMC7031742.
  29. Jeon J-H, Lee J, Choi M-K, Song I-S. Pharmacokinetics of ginsenosides following repeated oral administration of red ginseng extract significantly differ between species of experimental animals. Arch Pharm Res (Seoul) 2020;43(12): 1335-46. https://doi.org/10.1007/s12272-020-01289-0.
  30. Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann MK. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis 2021;13(1):20. https://doi.org/10.1038/s41419-021-04379-z. Epub 2021/12/22PubMed PMID: 34930895; PubMed Central PMCID: PMCPMC8688414.
  31. Liu C, Wang J, Yang Y, Liu X, Zhu Y, Zou J, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018;155:366-79. https://doi.org/10.1016/j.bcp.2018.07.010. Epub 2018/07/18PubMed PMID: 30012462.
  32. Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 2019;16(1):3. https://doi.org/10.1186/s12987-019-0123-z. Epub 2019/01/30PubMed PMID: 30691500; PubMed Central PMCID: PMCPMC6350359.
  33. Phi LTH, Sari IN, Wijaya YT, Kim KS, Park K, Cho AE, et al. Ginsenoside Rd inhibits the metastasis of colorectal cancer via epidermal growth factor receptor signaling Axis. IUBMB Life 2019;71(5):601-10. https://doi.org/10.1002/iub.1984. Epub 2018/12/24PubMed PMID: 30576064.
  34. Liu X, Chen L, Liu M, Zhang H, Huang S, Xiong Y, et al. Ginsenoside Rb1 and Rd remarkably inhibited the hepatic uptake of ophiopogonin D in shenmai injection mediated by OATPs/oatps. Front Pharmacol 2018;9:957. https://doi.org/10.3389/fphar.2018.00957. Epub 2018/09/07PubMed PMID:30186179; PubMed Central PMCID: PMCPMC6113708.
  35. Zhang C, Liu X, Xu H, Hu G, Zhang X, Xie Z, et al. Protopanaxadiol ginsenoside Rd protects against NMDA receptor-mediated excitotoxicity by attenuating calcineurin-regulated DAPK1 activity. Sci Rep 2020;10(1):8078. https://doi.org/10.1038/s41598-020-64738-2. Epub 2020/05/18PubMed PMID:32415270; PubMed Central PMCID: PMCPMC7228936.
  36. Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 2018;61(10):2079-86. https://doi.org/10.1007/s00125-018-4654-7. Epub 2018/08/23PubMed PMID: 30132033; PubMed Central PMCID:PMCPMC6124499.
  37. Koepsell H. The Na(+)-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017;170:148-65. https://doi.org/10.1016/j.pharmthera.2016.10.017. Epub 2016/11/03PubMedPMID: 27773781.
  38. Tsai WH, Chuang SM, Liu SC, Lee CC, Chien MN, Leung CH, et al. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 diabetes: a systematic review and meta-analysis. Sci Rep 2021;11(1):15364. https://doi.org/10.1038/s41598-021-94945-4. Epub 2021/07/30PubMed PMID:34321571; PubMed Central PMCID: PMCPMC8319393.
  39. Pawlos A, Broncel M, Wozniak E, Gorzelak-Pabis P. Neuroprotective effect of SGLT2 inhibitors. Molecules 2021;26(23). https://doi.org/10.3390/molecules26237213. Epub 2021/12/11PubMed PMID: 34885795; PubMed Central PMCID: PMCPMC8659196.
  40. Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. A functional role for sodium-dependent glucose transport across the bloodbrain barrier during oxygen glucose deprivation. J Pharmacol Exp Therapeut 2009;328(2):487-95. https://doi.org/10.1124/jpet.108.146589. Epub 2008/11/05PubMed PMID: 18981287; PubMed Central PMCID: PMCPMC2630371.
  41. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013;38(6): 1142-53. https://doi.org/10.1016/j.immuni.2013.05.016. Epub 2013/07/03PubMed PMID: 23809161; PubMed Central PMCID: PMCPMC3730833.