DOI QR코드

DOI QR Code

달 기지 건설을 위한 현지재료 활용 소결 기술 및 향후 과제

Review of the Sintering Technologies Using In-situ Resources for Lunar Construction and Future Works

  • Ryu, Geun U (Department of Future and Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Young-Jae (Department of Future and Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Hyu-Soung (Department of Future and Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.09.19
  • 심사 : 2022.11.10
  • 발행 : 2022.12.01

초록

우주 개발 경쟁은 지난 10년간 가속되어 왔으며, 많은 우주국들은 달 지상 탐사 및 유인 탐사를 목표로 연구를 수행 중에 있다. 장기적이고 지속 가능한 우주 탐사를 위하여 달에 유인기지와 기반 시설을 구축하고자 하는 계획이 전 세계에서 추진되고 있다. 하지만 건설에 필요한 재료를 지구로부터 운송하기 위해서는 천문학적인 비용이 소요된다. 따라서 달 현지의 자원을 활용하여 건설 재료를 생산하기 위한 기술이 개발되고 있으며, 그중 하나로 월면토를 소결하는 방안이 제시되었다. 본 논문에서는 대표적인 다섯 가지 소결 기술들인 일반 소결, 태양열 소결, 스파크 플라즈마 소결, 레이저 소결, 마이크로파 소결 기술을 소개하고 향후 필요로 되는 연구 과제에 대해 논의한다.

Over the last decade, the competition for space development has accelerated. The world's largest space agencies are aiming toward long-term lunar exploration and manned missions. For sustainable and safe lunar exploration, construction of infrastructures that include various habitats is essential. However, transporting construction materials from Earth for lunar base construction is extremely expensive. Thus, technologies for manufacturing construction materials using in-situ resources from the moon should be advanced. The sintering techniques have been actively studied using lunar soil. In this review, five sintering technologies, including radiation, solar, spark plasma, laser, and microwave sintering, for manufacturing construction materials using lunar soil are introduced, and future research is discussed.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

참고문헌

  1. Lacerda, M., "A Preliminary Systems Design on the NASA Lunar Modular Habitat with a Human-Autonomous Coordinated Operation: Design through the Integrated Product and Process Development Method," Earth and Space 2021, Virtual Conference, April 2021, pp. 1033~1036.
  2. Musilova, M., Nunes, A., Kerber, S., Pouwels, C., Wanske, A., D'Angelo, J., Foing, B. and Rogers, H., "The Second EuroMoonMars IMA at HI-SEA Field Campaign: An Overview of The EMMIHS-II Analog Mission to the Moon," EPSC2020 EPSC2020- 1020, Virtual Conference, October 2020.
  3. Hashimoto, T., Hoshino, T., Tanaka, S., Otake, H., Otsuki, M., Wakabayashi, S., Morimoto, H. and Masuda, K., "Introduction to Japanese exploration study to the moon," Acta Astronautica, Vol. 104, No.2, 2014, pp. 545~551. https://doi.org/10.1016/j.actaastro.2014.06.031
  4. Hong, S. C. and Shin, H. S., "Trend Analysis of Lunar Exploration Missions for Lunar Base Construction," Journal of the Korea AcademiaIndustrial cooperation Society, Vol. 19, No. 7, 2018, pp. 144~152.
  5. China National Space Administration, "International lunar Research station," China National Space Administration, 2021.
  6. Meurisse, A., Makaya, A., Willsch, C. and Sperl, M. "Solar 3D printing of lunar regolith," Acta Astronautica, Vol. 152, 2018, pp. 800~810. https://doi.org/10.1016/j.actaastro.2018.06.063
  7. Coordination Group, "In-Situ Resource Utilization Gap Assessment Report," International Space Exploration, technical report, International groups, 2021, p. 7.
  8. Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., Van Westrenen, W., Peraudeau, G., Jaumann, R. and Seboldt, W., "A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications," Planetary and Space Science, Vol. 74, No. 1, 2012, pp. 42~48. https://doi.org/10.1016/j.pss.2012.08.012
  9. Grugel, R. N. and Toutanji, H. "Sulfur "concrete" for lunar applications-Sublimation concerns," Advances in Space Research, Vol. 41, No. 1, 2008, pp. 103~112. https://doi.org/10.1016/j.asr.2007.08.018
  10. Cesaretti, G., Dini, E., De Kestelier, X., Colla, V. and Pambaguian, L. "Building components for an outpost on the Lunar soil by means of a novel 3D printing technology," Acta Astronautica, Vol. 93, 2014, pp. 430~450. https://doi.org/10.1016/j.actaastro.2013.07.034
  11. Buchner, C., Pawelke, R. H., Schlauf, T., Reissner, A. and Makaya, A. "A new planetary structure fabrication process using phosphoric acid," Acta Astronautica, Vol. 143, 2018, pp. 272~284. https://doi.org/10.1016/j.actaastro.2017.11.045
  12. Gosau, J. M., "Regolith stabilization and building materials for the lunar surface," In Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments, July 2012, pp. 243~249.
  13. Chen, T., Chow, B. J., Wang, M., Zhong, Y. and Qiao, Y., "High-pressure densification of composite lunar cement," Journal of Materials in Civil Engineering, Vol. 29, No. 10, 2017, p. 06017013. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002047
  14. Farries, K. W., Visintin, P., Smith, S. T. and van Eyk, P. "Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions," Construction and Building Materials, Vol. 296, 2021, p. 123627. https://doi.org/10.1016/j.conbuildmat.2021.123627
  15. Fateri, M., Meurisse, A., Sperl, M., Urbina, D., Madakashira, H. K., Govindaraj, S., Gancet, J., Imhof B., Hoheneder, W., Waclavicek, R., Preisinger, C., Podreka, E., Mohamed, M. P. and Weiss, P. "Solar sintering for lunar additive manufacturing," Journal of Aerospace Engineering, Vol. 32, No. 6, 2019, p. 04019101. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001093
  16. Kim, Y. J., Ryu, B. H., Jin, H., Lee, J. and Shin, H. S. "Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant," Ceramics International, Vol. 47, No. 19, 2021, pp. 26891~26897. https://doi.org/10.1016/j.ceramint.2021.06.098
  17. Phuah, X. L., Wang, H., Zhang, B., Cho, J., Zhang, X. and Wang, H., "Ceramic Material Processing Towards Future Space Habitat: Electric Current-Assisted Sintering of Lunar Regolith Simulant," Materials, Vol. 13, No. 18, 2020, p. 4128. https://doi.org/10.3390/ma13184128
  18. Taylor, L. A. and Meek, T. T., "Microwave sintering of lunar soil: properties, theory, and practice," Journal of Aerospace Engineering, Vol. 18, No. 3, 2005, pp. 188~196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
  19. Taylor, L. A., "Generation of native Fe in lunar soil," Engineering, construction, and operations in space I, ASCE, New York, August 1988, pp. 67~77.
  20. Heiken, G. H., Vaniman, D. T. and French, B. M., "Lunar Sourcebook, a user's guide to the Moon," Cambridge Univ Pr, 1991, p. 756.
  21. Schwandt, C., Hamilton, J. A., Fray, D. J. and Crawford, I. A. "The production of oxygen and metal from lunar regolith," Planetary and Space Science, Vol. 74, No. 1, 2012, pp. 49~56. https://doi.org/10.1016/j.pss.2012.06.011
  22. National Aeronautics and Space Administration, "The Lunar Sample Compendium," National Aeronautics and Space Administration, 2012, https://curator.jsc.nasa.gov/lunar/lsc/, June 2022.
  23. Housley, R. M., Grant, R. W. and Paton, N. E., "Origin and characteristics of excess Fe metal in lunar glass welded aggregates," Lunar and Planetary Science Conference Proceedings 4, Vol. 4, 1973, pp. 2737~2749.
  24. McKay, D. S., Carter, J. L., Boles, W. W., Allen, C. C. and Allton, J. H. "JSC-1: A new lunar regolith simulant," Lunar and Planetary Science Conference, Vol. 24, March 1993.
  25. Bonanno, A. and Bernold, L. E. "Exploratory review of sintered lunar soil based on the results of the thermal analysis of a lunar soil simulant," Journal of Aerospace Engineering, Vol. 28, No. 4, 2015, p. 04014114. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000428
  26. Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S. and Takagi, K. "Properties of lunar soil simulant manufactured in Japan," Space 98, New Mexico, April 1998, pp. 462~468.
  27. Engelschion, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U. and Sperl, M., "EAC-1A: A novel large-volume lunar regolith simulant," Scientific reports, Vol. 10. No. 1, 2020, pp. 1~9. https://doi.org/10.1038/s41598-019-56847-4
  28. Yoo, S. H., Kim, H. D., Lim, J. H. and Park, J. S., "Development of KAU mechanical lunar simulants and drop test of lunar landing gears," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 12, 2014, pp. 1037~1044. https://doi.org/10.5139/JKSAS.2014.42.12.1037
  29. Ryu, B. H., Wang, C. C. and Chang, I., "Development and geotechnical engineering properties of KLS-1 lunar simulant," Journal of Aerospace Engineering, Vol. 31, No. 1, 2018, p. 04017083. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000798
  30. Planetaty Simulant Database, 2022, https://simulantdb.com, June 2022.
  31. German, R. M., Sintering theory and practice. Wiley-VCH, 1996, p. 568.
  32. Blendell, J. E. and Handwerker, C. A., "Effect of chemical composition on sintering of ceramics," Journal of Crystal Growth, Vol. 75, No. 1, 1986, pp. 138~160. https://doi.org/10.1016/0022-0248(86)90235-6
  33. Hoshino, T., Wakabayashi, S., Yoshihara, S. and Hatanaka, N. "Key Technology Development for Future Lunar Utilization-Block Production Using Lunar Regolith," Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 14, No. 30, 2016, pp. 35~40.
  34. German, R. M., Suri, P. and Park, S. J. "Liquid phase sintering," Journal of materials science, Vol. 44, No. 1, 2009, pp. 1~39. https://doi.org/10.1007/s10853-008-3008-0
  35. Meurisse, A., Beltzung, J. C., Kolbe, M., Cowley, A. and Sperl, M., "Influence of mineral composition on sintering lunar regolith," Journal of Aerospace Engineering, Vol. 30, No. 4, 2017, p. 04017014. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000721
  36. McKay, D. S. and Williams, R. J., "A geologic assessment of potential lunar ores," Space resources and space settlements, 1979, pp. 243~255.
  37. Duke, M. B., "Workshop on Using In Situ Resources for Construction of Planetary Outposts," Workshop on Using In Situ resources for Construction of Planetary Outposts, Houston, No. LPI/TR-98-01, January 1998.
  38. Song, L., Xu, J., Fan, S., Tang, H., Li, X., Liu, J. and Duan, X. "Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity," Ceramics International, Vol. 45, No. 3, 2019, pp. 3627~3633. https://doi.org/10.1016/j.ceramint.2018.11.023
  39. Freeman, R. H., "STEM: Teaching Space Science of Extraterrestrial Development and Defense," Journal of Space Operations and Communicator, Vol. 18, No. 3, 2021.
  40. Cardiff, E. H. and Hall, B. C., "A dust mitigation vehicle utilizing direct solar heating," Joint Annual Meeting of Lunar Exploration Analysis Group-International Conference on Exploration and Utilization of the Moon-Space Resources Roundtable, November 2008.
  41. Hintze, P. E., "Building a vertical take off and landing pad using in situ materials," Space manufacturing, Vol. 14, 2010, pp. 29~31.
  42. Nakamura, T. and Smith, B. "Solar thermal system for lunar ISRU applications: Development and field operation at Mauna Kea, HI," 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Florida, January 2011, p. 433.
  43. Fateri, M., Sottong, R., Kolbe, M., Gamer, J., Sperl, M. and Cowley, A., "Thermal properties of processed lunar regolith simulant," International Journal of Applied Ceramic Technology, Vol. 16, No. 6, 2019, pp. 2419~2428. https://doi.org/10.1111/ijac.13267
  44. Imhof, B., Urbina, D., Weiss, P., Sperl, M., Hoheneder, W., Waclavicek, R., Madakashira, H. K., Salini, J., Govindaraj, S. Gancet, J., Mohamed, M. P., Gobert, T., Fateri, M., Meurisse, A., Lopez, O., Preisinger, C. and Preisinger, C., "Advancing solar sintering for building a base on the Moon," 69th International Astronautical Congress (IAC), Adelaide, September 2017.
  45. Shen, Z., Johnsson, M., Zhao, Z. and Nygren, M. "Spark plasma sintering of alumina," Journal of the American Ceramic Society, Vol. 85, No. 8, 2002, pp. 1921~1927. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  46. Zhang, X., Gholami, S., Khedmati, M., Cui, B., Kim, Y. R., Kim, Y. J., Shin, H. S. and Lee, J. "Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties," Ceramics International, Vol. 47, No. 4, 2021, pp. 5209~5220. https://doi.org/10.1016/j.ceramint.2020.10.100
  47. Santanach, J. G., Weibel, A., Estournes, C., Yang, Q., Laurent, C. and Peigney, A. "Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism (s) involved in densification and grain growth," Acta Materialia, Vol. 59, No. 4, 2011, pp. 1400~1408. https://doi.org/10.1016/j.actamat.2010.11.002
  48. Zhang, Z. H., Liu, Z. F., Lu, J. F., Shen, X. B., Wang, F. C. and Wang, Y. D. "The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge," Scripta materialia, Vol. 81, 2014, pp. 56~59. https://doi.org/10.1016/j.scriptamat.2014.03.011
  49. Zhang, X., Khedmati, M., Kim, Y. R., Shin, H. S., Lee, J., Kim, Y. J. and Cui, B. "Microstructure evolution during spark plasma sintering of FJS-1 lunar soil simulant," Journal of the American Ceramic Society, Vol. 103, No. 2, 2020, pp. 899~911. https://doi.org/10.1111/jace.16808
  50. Wang, Q., Michaleris, P. P., Nassar, A. R., Irwin, J. E., Ren, Y. and Stutzman, C. B. "Modelbased feedforward control of laser powder bed fusion additive manufacturing," Additive Manufacturing, Vol. 31, 2020, p. 100985. https://doi.org/10.1016/j.addma.2019.100985
  51. Fateri, M. and Gebhardt, A., "Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications," International Journal of Applied Ceramic Technology, Vol. 12, No. 1, 2015, pp. 46~52. https://doi.org/10.1111/ijac.12326
  52. Spierings, A. B., Herres, N. and Levy, G., "Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts," Rapid Prototyping Journal, Vol. 17 No. 3, 2011, pp. 195~202. https://doi.org/10.1108/13552541111124770
  53. Abd-Elghany, K. and Bourell, D. L., "Property evaluation of 304L stainless steel fabricated by selective laser melting," Rapid Prototyping Journal, Vol. 18 No. 5, 2012, pp. 420~428. https://doi.org/10.1108/13552541211250418
  54. Goulas, A., Harris, R. A. and Friel, R. J. "Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials," Additive Manufacturing, Vol. 10, 2016, pp. 36~42. https://doi.org/10.1016/j.addma.2016.02.002
  55. Goulas, A., Binner, J. G., Harris, R. A. and Friel, R. J., "Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing," Applied Materials Today, 6, 2017, pp. 54~61. https://doi.org/10.1016/j.apmt.2016.11.004
  56. Balla, V. K., Roberson, L. B., O'Connor, G. W., Trigwell, S., Bose, S. and Bandyopadhyay, A., "First demonstration on direct laser fabrication of lunar regolith parts," Rapid Prototyping Journal, Vol. 18 No. 6, 2012, pp. 451~457. https://doi.org/10.1108/13552541211271992
  57. Caprio, L., Demir, A. G., Previtali, B. and Colosimo, B. M., "Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion," Additive Manufacturing, Vol. 32, 2020, p. 101029. https://doi.org/10.1016/j.addma.2019.101029
  58. Paeng, D., Yeo, J., Lee, D., Moon, S. J. and Grigoropoulos, C. P. "Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles," Applied Physics A, Vol. 120, No. 4, 2015, pp. 1229~1240. https://doi.org/10.1007/s00339-015-9320-z
  59. Mueller, R. P., Sibille, L., Hintze, P. E., Lippitt, T. C., Mantovani, J. G., Nugent, M. W. and Townsend, I. I., "Additive construction using basalt regolith fines," Earth and Space, October 2014, pp. 394~403.
  60. Goulas, A., Binner, J. G., Engstrom, D. S., Harris, R. A. and Friel, R. J. "Mechanical behaviour of additively manufactured lunar regolith simulant components," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 233, No. 8, 2019, pp. 1629~1644. https://doi.org/10.1177/1464420718777932
  61. Reitz, B., Lotz, C., Gerdes, N., Linke, S., Olsen, E., Pflieger, K., Sphrt, S., Ernst, M., Taschner, P., Neumann, J., Stoll, E. and Overmeyer, L., "Additive manufacturing under lunar gravity and microgravity," Microgravity Science and Technology, Vol. 33, No. 2, 2021, pp. 1~12. https://doi.org/10.1007/s12217-020-09852-6
  62. Neumann, J., Ernst, M., Taschner, P., Gerdes, N., Stapperfens, S., Linke, S., Lotz, C., Koch, J., Wesesels, P., Stoll, E., Overmeyer, L. and Overmeyer, L. "The MOONRISE: payload for mobile selective laser melting of lunar regolith," In International Conference on Space Optics-ICSO 2020, Vol. 11852, 2021, p. 118526T.
  63. Oghbaei, M. and Mirzaee, O. "Microwave versus conventional sintering: A review of fundamentals, advantages and applications," Journal of alloys and compounds, Vol. 494, No. 1-2, 2010, pp. 175~189. https://doi.org/10.1016/j.jallcom.2010.01.068
  64. Sutton, W. H., "Microwave processing of ceramic materials," American Ceramic Society Bulletin, Vol. 68 No. 2, 1989, pp. 376~386.
  65. Clark, D. E., Folz, D. C. and West, J. K., "Processing materials with microwave energy," Materials Science and Engineering A, Vol. 287, No. 2, 2020, pp. 153~158. https://doi.org/10.1016/S0921-5093(00)00768-1
  66. Bhattacharya, M. and Basak, T., "A review on the susceptor assisted microwave processing of materials," Energy, Vol. 97, 2016, pp. 306~338. https://doi.org/10.1016/j.energy.2015.11.034
  67. Barmatz, M., Steinfeld, D., Begley, S. B., Winterhalter, D. and Allen, C., "Microwave Permittivity and Permeability Measurement on Lunar Soils," 42nd Lunar and Planetary Science Conference, Taxas, No. JSC-CN-22645, March 2011.
  68. Allan, S. M., Merritt, B. J., Griffin, B. F., Hintze, P. E. and Shulman, H. S. "High-temperature microwave dielectric properties and processing of JSC-1AC lunar simulant," Journal of Aerospace Engineering, Vol. 26, No. 4, 2013, pp. 874~881. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000179
  69. Kanamori H., Tsubaki S., Yamamoto, M., Fujii, S., Wada, Y., Hoshino, T. and Hosoda, S., "Production of gravel from lunar soil simulant by rapid microwave sintering," Space Resources Roundtable and the Planetary and Terrestrial Mining Sciences Symposium, Colorado School of Mines in Golden, Colorado, 2018.
  70. Lim, S., Bowen, J., Degli-Alessandrini, G., Anand, M., Cowley, A. and Levin Prabhu, V., "Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers," Scientific reports, Vol. 11, No. 1, 2021, pp. 1~16. https://doi.org/10.1038/s41598-020-79139-8
  71. Clinton, R. G., Edmunson, J. E., Fiske, M., Effinger, M. R., Jensen, E. and Ballard, J., "Overview of NASA's Moon-to-Mars Planetary Autonomous Construction Technology (MMPACT)," ASCEND, Las Vegas, November 2021, p. 4072.
  72. Laura, "Spaceship EAC: turning up the heat on lunar dust," ESA blog, 2021, https://blogs.esa.int/exploration/spaceship-eac-turning-up-the-heat-on-lunar-dust/, June 2022.
  73. Thostenson, E. T. and Chou, T. W., "Microwave processing: fundamentals and applications," Composites Part A: Applied Science and Manufacturing, Vol. 30, No. 9, 1999, pp. 1055~1071. https://doi.org/10.1016/S1359-835X(99)00020-2
  74. Janney, M. A., Calhoun, C. L. and Kimrey, H. D., "Microwave sintering of Solid oxide fuel cell materials: I, zirconia-8 mol% yttria," Journal of the American Ceramic Society, Vol. 75, No. 2, 1992, pp. 341~346. https://doi.org/10.1111/j.1151-2916.1992.tb08184.x
  75. Spotz, M. S., Skamser, D. J. and Johnson, D. L., "Thermal stability of ceramic materials in microwave heating," Journal of the American Ceramic Society, Vol. 78, No. 4, 1995, pp. 1041~1048. https://doi.org/10.1111/j.1151-2916.1995.tb08434.x
  76. Popovich, V., Laot, M., Cheibas, I., Rich, B., Popovich, V. and Summerer, L., "Additive Manufacturing of Functionally Graded Materials from Lunar Regolith," Technical report, European Space Agency, Europe, p. 6.
  77. Olhoeft, G. R. and Strangway, D. W., "Dielectric properties of the first 100 meters of the Moon," Earth and Planetary Science Letters, Vol. 24, No. 3, 1975, pp. 394~404. https://doi.org/10.1016/0012-821X(75)90146-6