DOI QR코드

DOI QR Code

Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment

고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축

  • Received : 2022.04.26
  • Accepted : 2022.09.21
  • Published : 2022.12.01

Abstract

Fixed-wing UAVs have long endurance and range capabilities compared to other aerial platforms. These advantages led fixed-wing UAVs to become a popular platform for reconnaissance missions in the military. In this research, we modeled fixed-wing UAVs, including the landing gear model and developed a guidance and control system for flight control computers to construct a HILS environment. We also developed an autopilot system that includes automated take-off, cruise, and landing control for UAVs. We also retrived the Aerodynamic coefficients an UAV using Datcom and AVL software and used them for 6 degrees of freedom modeling. The Flight control computer calculates guidance commands using the Carrot chasing guidance law after distinguishing the condition of the UAV based on 16 pre-defined flight modes and calculates control inputs using Nonlinear Dynamic Inversion (NDI) control scheme. We used RTNngine to integrate the Simulink model and flight control computer for HILS environment formulation.

고정익 UAV는 다른 항공기 플랫폼보다 항속거리와 항속시간에서 큰 이점을 가진다. 이러한 이유로 군에서 정찰용으로 많이 사용된다. 본 연구에서는 랜딩기어를 포함한 고정익 UAV의 모델링을 실시하고, 비행조종컴퓨터에 사용될 유도 및 제어기 설계 및 HILS 환경 구축을 실시하였다. 또한 이륙, 순항, 착륙의 모든 과정을 자동으로 수행하는 오토파일럿 시스템을 제작하였다. 연구에 사용한 고정익 UAV를 Datcom 및 AVL 공력해석 소프트웨어를 사용하여 공력계수를 추출하고 6자유도 모델링을 실시하였다. 비행조종컴퓨터는 항공기의 16개의 비행모드를 분별하여 Carrot Chasing 기반 유도 명령을 생성하는 유도기와 Nonlinear Dynamic Inversion 기법을 사용한 제어기로 구성되어있다. SIMULINK를 사용하여 구현된 모델링과 비행조종컴퓨터는 RTNgine을 사용하여 HILS 환경을 제작하여 고정익 UAV의 통합 시뮬레이션 환경을 제작하였다.

Keywords

Acknowledgement

이 논문은 2020년도 한화시스템(주)의 재원을 지원 받아 수행된 연구임

References

  1. Frye, A. J. and Mehiel E. M., "Modeling and simulation of vehicle performance in a UAV swarm using horizon simulation framework," AIAA SciTech 2019 Forum, 2019, p. 1980.
  2. Sujit, P. B., Saripalli, S. and Sousa, J. B., "Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial Vehicles," IEEE Control Systems Magazine, Vol. 34. No. 1. 2014. pp. 42-59.
  3. Williams, J. E. and Vukelich, S. R., "The USAF Stability And Control Digital Datcom, Volume I," USAF Technical Report AFFDL-TR-79-3032 (AD A086557) Users Manual, April 1979.
  4. Drela, M. and Youngrcn, H., "Athena Vortex Lattice (AVL) 3.35 User Guide," Massachusetts Institute of Technology Tech Report, 2013.
  5. Slotine, J. E. and Li, W., Applied nonlinear control 1st Ed., Englewood Cliffs, Prentice hall, 1991 pp. 252 ~ 262.
  6. Kim, L. S., Kim, S. J., Lee, D. W. and Bang, H. C., "Modeling of Landing Gears in 6 Degrees of Freedom Etiviroriment for Simulation of Fixed Wing Aircraft landing Performance," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conferenue, July 2021, pp. 780~781.
  7. Byun, J, Hur, G. B., Lee, K. H. and Suk, J., "A Study on UAV Flight Control System HILS Test Environment," Journal of the Korean Society for Aeronautical & Space Sciences, Vol 44, No. 4. 2016, pp. 316~323. https://doi.org/10.5139/JKSAS.2016.44.4.316
  8. Han, D. I., Kim, Y. S., Lee, C. Y., Lee, D. W. and Cho, K. R., "A Study on Verify of UAV Flight Control Software Simulated Flight using Model-Based Development and X-Plane simulator," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 43 No. 2, 2015, pp. 166-171.
  9. Lee, J. H., Kim, E. T. and Seong, K. J., "HILS Test for the Small Aircraft Autopilot," Aerospace Engineering and Technology, Vol. 8 No. 1, 2009, pp. 172-178.
  10. Ahmad, M., Hussain, Z. L., Shah, S. I. A. and Shams, T. A., "Estimation of Stability Parameters for Wide Body Aircraft Using Computational Techniques, Applied Sciences, Vol. 11 No. 5, 2021, p. 2087. https://doi.org/10.3390/app11052087
  11. Ribeiro, F. C., de Paula, A., Scholz, D., Gil, R. and da Silva, A. "Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight, In 7th European Conference for Aeronautics and Space Sciences, July 2017.
  12. Nugroho, G., Zuliardiansyah, G. and Rasyiddin, A. A. "Performance Analysis of Empennage Configurations on a Surveillance and Monitoring Mission of a VTOL-Plane UAV Using a Computational Fluid Dynamics Simulation,w Aerospace, Vol. 9, No. 4, 2022, p. 208. https://doi.org/10.3390/aerospace9040208