DOI QR코드

DOI QR Code

Hypervelocity Impact Simulations Considering Space Objects With Various Shapes and Impact Angles

다양한 형상의 우주 물체와 충돌 각도를 고려한 우주 구조물의 초고속 충돌 시뮬레이션 연구

  • Shin, Hyun-Cheol (Department of Aerospace Engineering, Chungnam National University) ;
  • Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2022.07.26
  • Accepted : 2022.10.19
  • Published : 2022.12.01

Abstract

This study conducts Hypervelocity Impact(HVI) simulations considering space objects with various shapes and different impact angles. A commercial nonlinear structural dynamics analysis code, LS-DYNA, is used for the present simulation study. The Smoothed Particle Hydrodynamic(SPH) method is applied to represent the impact phenomena with hypervelocity. Mie-Grüneisen Equation of State and Johnson-Cook material model are used to consider nonlinear structural behaviors of metallic materials. The space objects with various shapes are modeled as a sphere, cube, cylinder, and cone, respectively. The space structure is modeled as a thin plate(200 mm×200 mm×2 mm). HVI simulations are conducted when space objects with various shapes with 4.119 km/s collide with the space structures, and the impact phenomena such as a debris cloud are analyzed considering the space objects with various shapes having the same mass at the different impact angles of 0°, 30° and 45° between the space object and space structure. Although space objects have the same kinetic energy, different debris clouds are generated due to different shapes. In addition, it is investigated that the size of the debris cloud is decreased by impact angles.

본 연구에서는 다양한 형상의 우주 물체와 우주 구조물 사이의 충돌 각도를 고려한 초고속 충돌(Hypervelocity impact) 시뮬레이션 연구를 수행하였다. 비선형 구조 동역학 전산 해석 프로그램인 LS-DYNA의 완화 입자 유동법(Smoothed Particle Hydrodynamics, SPH)을 사용하여 초고속 충돌 현상을 묘사하였으며, 금속 재료의 비선형 거동을 구현하기 위하여 Mie-Grüneisen의 상태 방정식과 Johnson-Cook의 재료 모델을 사용하였다. 구, 정육면체, 원기둥 및 원뿔 형상의 다양한 형상의 우주 물체를 이용하였으며, 우주 구조물은 알루미늄 평판(200 mm×200 mm×2 mm)으로 모델링되었다. 우주 물체가 우주 구조물 대비 4.119 km/s의 상대 속도로 충돌하는 시뮬레이션을 수행하여 동일 질량을 갖는 다양한 형상의 우주 물체와 우주 구조물 사이의 0°, 30° 및 45°의 충돌 각도를 고려하였을 시 초고속 충돌에 의하여 발생되는 파편운(debris cloud) 형상을 분석하였다. 동일한 운동 에너지를 갖는 우주 물체는 형상의 차이로 인해 모두 다른 파편운이 형성되었다. 더불어 충돌 각도의 증가에 따라 파편운의 크기가 줄어드는 경향을 확인하였다.

Keywords

Acknowledgement

본 논문은 2022년 정부(과학기술정보통신부)의 재원으로 한국연구재단 스페이스챌린지사업(NRF-2022M1A3B8076744)의 지원을 받아 수행된 연구입니다. 본 논문의 일부는 한국군사과학기술학회 2022년 종합학술대회에서 발표되었습니다.

References

  1. ESA Space Debris Office, "ESA's Annual Space Environment Report 2022," Available online: https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf/(accessed on 20 June 2022).
  2. Anderson, C. E., Trucano, T. G. and Mullin, S. A., "Debris Cloud Dynamics," International Journal of Impact Engineering, Vol. 9, Iss. 1, 1990, pp. 89~113. https://doi.org/10.1016/0734-743X(90)90024-P
  3. Hyde, J. L., Christiansen, E. L. and Lear, D. M., "Observations of MMOD Impact Damage to the ISS," International Orbital Debris Conference, 2019.
  4. Piekutowski, A. J., "Characteristics of Debris Clouds Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Plates," International Journal of Impact Engineering, Vol. 14, No. 1-4, 1993, pp. 573~586. https://doi.org/10.1016/0734-743X(93)90053-A
  5. Zhang, Y., An, F., Liao, S., Wu, C., Liu, J. and Li, Y., "Study on Numerical Simulation Methods for Hypervelocity Impact on Large-Scale Complex Spacecraft Structures," Aerospace, Vol. 9, No. 1, 2021.
  6. Wen, K., Chen, X. W. and Lu, Y. G., "Research and Development on Hypervelocity Impact Protection using Whipple Shield: An Overview," Defence Technology, Vol. 17, No. 6, 2021, pp. 1864~1886. https://doi.org/10.1016/j.dt.2020.11.005
  7. Kang, P. S., Im, C. K., Youn, S. K., Lim, J. H. and Hwang, D. S., "A Study on the Damage of Satellite Caused by Hypervelocity Impact with Orbital Debris," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 7, 2012, pp. 555~563. https://doi.org/10.5139/JKSAS.2012.40.7.555
  8. Sakong, J., Woo, S. C. and Kim, T. W., "A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique," Transactions of The Korean Society of Mechanical Engineers-A, Vol. 40, No. 5, 2016, pp. 457~467. https://doi.org/10.3795/KSME-A.2016.40.5.457
  9. Huang, J., Ma, Z. X., Ren, L. S., Li, Y., Zhou, Z. X. and Liu, S., "A New Engineering Model of Debris Cloud Produced by Hypervelocity Impact," International Journal of Impact Engineering, Vol. 56, 2013, pp. 32~39. https://doi.org/10.1016/j.ijimpeng.2012.07.003
  10. Watson, E. and Steinhauser, M. O., "Discrete Particle Method for Simulating Hypervelocity Impact Phenomena," Materials, Vol. 10, No. 4, 2017.
  11. McKnight, D., Johnson, N., Fudge, M. L. and Maclay, T. D., "Satellite Orbital Debris Characterization Impact Test (SOCIT) Series Data Collection Report," Karman Sciences Corporation, 1995.
  12. Silnikov, M. V., Guk, I. V., Mikhaylin, A. I., Nechunaev, A. F. and Rumyantsev, B. V., "Numerical Simulation of Hypervelocity Impacts of Variously Shaped Projectiles with Thin Bumpers," Materials Physics & Mechanics, Vol. 42, No. 1, 2019, pp. 20~29.
  13. Silnikov, M. V., Guk, I. V., Nechunaev, A. F. and Smirnov, N. N., "Numerical Simulation of Hypervelocity Impact Problem for Spacecraft Shielding Elements," Acta Astronautica, Vol. 150, 2018, pp. 56~62. https://doi.org/10.1016/j.actaastro.2017.08.030
  14. Plassard, F., Mespoulet, J. and Hereil, P., "Hypervelocity Impact of Aluminium Sphere Against Aluminium Plate : Experiment and LS-DYNA Correlation," Proceedings of the 8th European LS-DYNA Users Conference, 2011, pp. 1~11.
  15. Hiermaier, S., "Structures Under Crash and Impact: Continuum Mechanics, Discretization and Experimental Characterization," Springer Science & Business Media, 2007.
  16. Carriere, R. and Cherniaev, A., "Hypervelocity Impacts on Satellite Sandwich Structures- A Review of Experimental Findings and Predictive Models," Applied Mechanics, Vol. 2, No. 1, 2021, pp. 25~45. https://doi.org/10.3390/applmech2010003
  17. Liu, G. R., "Meshfree Methods: Moving Beyond the Finite Element Method," CRC Press, 2009.
  18. Aslebagh, R., "Hypervelocity Impact on Satellite Sandwich Structures: Development of a Simulation Model and Investigation of Projectile Shape and Honeycomb Core Effects," Doctoral dissertation, University of Windsor, 2021.
  19. Johnson, G. R. and Cook, W. H., "Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures," Engineering Fracture Mechanics, Vol. 21, No. 1, 1985, pp. 31~48. https://doi.org/10.1016/0013-7944(85)90052-9
  20. Venkatesan, J., Iqbal, M. A., Gupta, N. K., Bratov, V., Kazarinov, N. and Morozov, F., "Ballistic Characteristics of Bi-layered Armour with Various Aluminium Backing against Ogive Nose Projectile," Procedia Structural Integrity, Vol. 6, 2017, pp. 40~47. https://doi.org/10.1016/j.prostr.2017.11.007
  21. Beal, T., Van Dorsselaer, N. and Lapoujade, V., "A Contribution to Validation of SPH New Features," In 9th European LS-DYNA conference, 2013, pp. 2~4.
  22. Legaud, T., Le Garrec, M., Van Dorsselaer, N. and Lapoujadet, V., "Improvement of Satellites Shielding Under High Velocity Impact Using Advanced SPH Method," Proceedings of The 12th European LS-DYNA Users Conference, 2019.
  23. Piekutowski, A. J., "Debris Clouds Generated by Hypervelocity Impact of Cylindrical Projectiles with Thin Aluminum Plates," International Journal of Impact Engineering, Vol. 5, No. 1-4, 1987, pp. 509~518. https://doi.org/10.1016/0734-743X(87)90066-2