과제정보
본 연구는 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다. 이에 감사드립니다(NRF-2019R1I1A3A01059929).
참고문헌
- Affandia, AK., Watanabe, K., and Tirtomihardjo, H. (2007). "Application of an artificial neural network to estimate groundwater level fluctuation." Journal of Spatial Hydrology, Vol. 7, No. 2, pp. 17-32.
- Aqil, M., Kita, I., Yano, A., and Nishiyama, S. (2007). "A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff." Journal of Hydrology, Vol. 337, No. 1-2, pp. 22-34. https://doi.org/10.1016/j.jhydrol.2007.01.013
- Barthel, R., and Banzhaf, S. (2016). "Groundwater and surface water interaction at the regional-scale - a review with focus on regional integrated models." Water Resources Management, Vol. 30, No. 1, pp. 1-32. https://doi.org/10.1007/s11269-015-1163-z
- Batelaan, O., De Smedt, F., and Triest, L. (2003). "Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change." Journal of Hydrology, Vol. 275, No. 1-2, pp. 86-108. https://doi.org/10.1016/S0022-1694(03)00018-0
- Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K. (2005). "Ground water level forecasting using artificial neural networks." Journal of Hydrology, Vol. 309, No. 1-4, pp. 229-240. https://doi.org/10.1016/j.jhydrol.2004.12.001
- Derbela, M., and Nouiri, I. (2020). "Intelligent approach to predict future groundwater level based on artificial neural networks (ANN)." Euro-Mediterranean Journal for Environmental Integration, Vol. 5, No. 3, pp. 1-11. https://doi.org/10.1007/s41207-019-0135-8
- Ebrahimi, H., and Rajaee, T. (2017). "Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine." Global and Planetary Change, Vol. 148, pp. 181-191. https://doi.org/10.1016/j.gloplacha.2016.11.014
- Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). "A new heuristic optimization algorithm: harmony search." Simulation, Vol. 76, No. 2, pp. 60-68. https://doi.org/10.1177/003754970107600201
- Goldberg, D.E., and Holland, J.H. (1988). "Genetic algorithms and machine learning." Machine Learning, Vol. 3, pp. 95-99. https://doi.org/10.1023/A:1022602019183
- Joo, G., Park, C., and Im, H. (2020). "Performance evaluation of machine learning optimizers." Journal of Korean Electrical and Electronics Engineers, Vol. 24, No. 3, pp. 766-776.
- Kennedy, J., and Eberhart, R. (1995). "Particle swarm optimization." Proceedings of the IEEE International Conference on Neural Networks, Indianapolis, IN, Vol. 4, pp. 1942-1948.
- Kim, I., and Lee, J. (2018). "Prediction model for spatial and temporal variation of groundwater level based on river stage." Journal of Hydrologic Engineering, Vol. 23, No. 6, 06018002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001658
- Kim, I., Lee, J., Kim, J., Lee, H., and Lee, J. (2021). "Analysis of groundwater level prediction performance with influencing factors by artificial neural network." Journal of the Korean Geotechnical Society, Vol. 37, No. 5, pp. 19-31. https://doi.org/10.7843/KGS.2021.37.5.19
- Kim, Y.N., and Lee, E.H. (2020). "Development of the meta-heuristic optimization algorithm: Exponential bandwidth harmony search with centralized global search." Journal of the Korea AcademiaIndustrial cooperation Society, Vol. 21, No. 2, pp. 8-18.
- Knotters, M., and Bierkens, M.F. (2000). "Physical basis of time series models for water table depths." Water Resources Research, Vol. 36, No. 1, pp. 181-188. https://doi.org/10.1029/1999WR900288
- Liu, Q., Jian, W., and Nie, W. (2021). "Rainstorm-induced landslides early warning system in mountainous cities based on groundwater level change fast prediction." Sustainable Cities and Society, Vol. 69, 102817. https://doi.org/10.1016/j.scs.2021.102817
- Mahdavi, M., Fesanghary, M., and Damangir, E. (2007). "An improved harmony search algorithm for solving optimization problems." Applied mathematics and computation, Vol. 188, No. 2, pp. 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
- Maxwell, R.M., Condon, L.E., and Kollet, S.J. (2015). "A highresolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3." Geoscientific Model Devel opment, Vol. 8, No. 3, pp. 923-937. https://doi.org/10.5194/gmd-8-923-2015
- McCulloch, W.S., and Pitts, W. (1943). "A logical calculus of the ideas immanent in nervous activity." The Bulletin of Mathematical Biophysics, Vol. 5, No. 4, pp. 115-133. https://doi.org/10.1007/BF02478259
- Ministry of Land, Infrastructure and Transport (MOLIT) (2011). Bok-stream basic plan (change) report, p. 34.
- Park, C., and Chung, I.M. (2020). "Evaluating the groundwater prediction using LSTM model." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 273-283. https://doi.org/10.3741/JKWRA.2020.53.4.273
- Rosenblatt, F. (1958). "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological Review, Vol. 65, No. 6, 386. https://doi.org/10.1037/h0042519
- Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). "Learning representations by back-propagating errors." Nature, Vol. 323, No. 6088, pp. 533-536. https://doi.org/10.1038/323533a0
- Ryu, Y.M., and Lee, E.H. (2022). "Application of neural networks to predict Daecheong Dam water levels." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 1, pp. 67-78. https://doi.org/10.9798/KOSHAM.2022.22.1.67
- Sahoo, S., and Jha, M.K. (2013). "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment." Hydrogeology Journal, Vol. 21, No. 8, pp. 1865-1887. https://doi.org/10.1007/s10040-013-1029-5
- Sahoo, S., Russo, T.A., Elliott, J., and Foster, I. (2017). "Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US." Water Resources Research, Vol. 53, No. 5, pp. 3878-3895. https://doi.org/10.1002/2016WR019933
- Sattari, M.T., Mirabbasi, R., Sushab, R.S., and Abraham, J. (2018). "Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model." Groundwater, Vol. 56, No. 4, pp. 636-646. https://doi.org/10.1111/gwat.12620
- Sedki, A., Ouazar, D., and El Mazoudi, E. (2009). "Evolving neural network using real coded genetic algorithm for daily rainfall - runoff forecasting." Expert Systems with Applications, Vol. 36, No. 3, pp. 4523-4527. https://doi.org/10.1016/j.eswa.2008.05.024
- Shin, M.J., Moon, S.H., Kang, K.G., Moon, D.C., and Koh, H.J. (2020). "Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network." Hydrology, Vol. 7, No. 3, 64. https://doi.org/10.3390/hydrology7030064
- Suryanarayana, C., Sudheer, C., Mahammood, V., and Panigrahi, B.K. (2014). "An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India." Neurocomputing, Vol. 145, pp. 324-335. https://doi.org/10.1016/j.neucom.2014.05.026
- Trichakis, I.C., Nikolos, I.K., and Karatzas, G.P. (2011). "Artificial neural network (ANN) based modeling for karstic groundwater level simulation." Water Resources Management, Vol. 25, No. 4, pp. 1143-1152. https://doi.org/10.1007/s11269-010-9628-6
- White, J.T., Knowling, M.J., and Moore, C.R. (2020). "Consequences of groundwater-model vertical discretization in risk-based decision-Making." Groundwater, Vol. 58, No. 5, pp. 695-709.
- Yoo, Y., Kim, D., and Lee, J. (2020). "Performance analysis of various activation functions in super resolution model." Proceedings of the Korea Information Processing Society Conference, KIPS, Vol. 27, No. 1, pp. 504-507.
- Yousefi, H., Zahedi, S., Niksokhan, M.H., and Momeni, M. (2019). "Ten-year prediction of groundwater level in Karaj plain (Iran) using MODFLOW2005-NWT in MATLAB." Environmental Earth Sciences, Vol. 78, No. 12, pp. 1-14. https://doi.org/10.1007/s12665-018-7995-0