DOI QR코드

DOI QR Code

춘천 물로리 지역 샌드댐 채움재 수리특성에 따른 배수량 평가

Evaluation of water drainage according to hydraulic properties of filling material of sand dam in Mullori, Chuncheon

  • 정일문 (한국건설기술연구원 수자원하천연구본부) ;
  • 이정우 (한국건설기술연구원 수자원하천연구본부) ;
  • 김민규 (한국건설기술연구원 수자원하천연구본부) ;
  • 김일환 (한국건설기술연구원 수자원하천연구본부)
  • Chung, Il-Moon (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jeongwoo (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Min-Gyu (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Il-Hwan (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.10.06
  • 심사 : 2022.10.17
  • 발행 : 2022.11.30

초록

춘천 물로리 지역은 지방상수도가 보급되지 않은 물복지 소외지역으로 복류수 및 지하수를 수원으로 하는 소규모 급수시설로 마을에 물을 공급하고 있다. 최근 극심한 가뭄 발생시 물부족으로 인해 급수차에 의존하는 등 물공급 여건이 열악한 지역이다. 따라서 가뭄시 물부족 문제를 해결하고 증가하는 물수요에 대비하기 위해 계곡에 연하여 샌드댐을 설치하였으며, 2022년 5월부터 이 시설을 운영하고 있다. 본 연구에서는 2020년 3월 중순부터 2022년 3월 중순까지 약 2년 동안의 유입량 조건에 대해 채움재의 수리전도도와 저류계수 값 조건에 따라 반복 모의를 수행하였고, 각각의 경우에 대해 유공배수관을 통한 방류량을 산정하였다. 전반적으로 수리전도도가 증가할수록 방류량과 그 비율이 증가하나, 2층의 수리전도도가 상대적으로 가장 낮은 경우에는 3층의 수리전도도가 증가할수록 방류량이 증가하다가 작아지는 특이한 양상을 보였다. 이는 3층의 투수성과 배수관의 배수계수 값이 커서 3층으로의 순유입보다 빠른 배수로 인해 수위가 낮게 유지된데서 기인한 것으로 판단된다. 샌드댐 상부 개수로 흐름을 수리전도도가 매우 큰 가상의 지하수층으로 모사한 결과 가상층 수리전도도 증가율에 비해 방류량 감소는 둔화되지만, 가상층 수리전도도가 커짐에 따라 상대적으로 방류량이 줄어드는 양상은 명확하게 나타났다.

The Chuncheon Mullori area is an underprivileged area of water welfare where local water supply is not supplied, and it is supplying water to the villages with small water supply facilities using lateral flow and groundwater as water sources. This is an area with poor water supply conditions, such as relying on water trucks due to water shortages during the recent severe drought. Therefore, in order to solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed along the valley, and this facility has been operating since May 2022. In this study, repeated simulations were performed according to the hydraulic conductivity of the filler material and the storage coefficient value for the inflow condition for about two years from mid-March 2020 to mid-March 2022. For each case, the amount of discharge through the perforated drain pipe was calculated. Overall, as the hydraulic conductivity increased, the amount of discharge and its ratio increased. However, when the hydraulic conductivity of the second floor was relatively low, the amount of discharge increased and then decreased as the hydraulic conductivity of the third floor increased. This is considered to be due to the fact that the water level was kept low due to the rapid drainage compared to the net inflow into the third floor because the water permeability of the third floor and the drainage coefficient of the drain pipe were large. As a result of simulating the flow of the open channel in the upper part of the sand dam as a hypothetical groundwater layer with very high hydraulic conductivity, the decrease in discharge rate was slower than the increase in the hydraulic conductivity of the hypothetical layer, but it was clearly shown that the discharge volume decreased relatively as the hydraulic conductivity of the virtual layer increased.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수요대응형 물공급 서비스사업의 지원을 받아 연구되었습니다(과제번호 146525).

참고문헌

  1. Aerts, J., Lasage, R., Beets, W., de Moel, H., Mutiso, G., Mutiso, S., and de Vries, A. (2007). "Robustness of sand storage dams under climate change." Vadose Zone Journal, Vol. 6, No. 3, pp. 572-580. https://doi.org/10.2136/vzj2006.0097
  2. Hoogmoed, M. (2007). Analyses of impacts of a sand storage dam on groundwater flow and storage: groundwater flow modeling in Kitui district, Kenya. Master Thesis, VU University Amsterdam, pp. 20-28.
  3. Kim, G.B., Chung, I.-M., and Ha, G. (2020). "GW-SMART research project." Water Journal, July, 2020, pp. 32-39.
  4. Lasage, R., Aerts, J., Mutiso, G.C.M., and de Vries, A. (2008). "Potential for community based to droughts: sand dams in Kitui, Kenya." Physics and Chemistry of the Earth, Parts A/B/C, Vol. 33, No. 1-2, pp. 67-73. https://doi.org/10.1016/j.pce.2007.04.009
  5. McDonald, M.G., and Harbaugh, A.W. (1988). A modular threedimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations, Book 6, Chapter A1, U.S. Geological Survey, Reston, VA, pp. 1-588.
  6. Quilis, R.O., Hoogmoed, M., Ertsen, M., Foppen, J.W., Hut, R., and de Vries, A. (2009). "Measuring and modeling hydrological processes of sand-storage dams on different spatial scales." Physics and Chemistry of the Earth, Parts A/B/C, Vol. 34, No. 4-5, pp. 289-298. https://doi.org/10.1016/j.pce.2008.06.057
  7. Quinn, R., Rushton, K., and Parker, A. (2019). "An examination of the hydrological system of a sand dam during the dry season leading to water balances." Journal of Hydrology X, Vol. 4, 100035. https://doi.org/10.1016/j.hydroa.2019.100035
  8. Yifru, B., Kim, M.G., Chang, S.W., Lee, J., and Chung, I.M. (2018). "Numerical modeling of the effect of sand dam on groundwater flow." The Journal of Engineering Geology, Vol. 28, No. 4, pp. 529-540. https://doi.org/10.9720/KSEG.2018.4.529