DOI QR코드

DOI QR Code

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho, Yoon (Telecommunications and Media Research Laboratory, Electronics Telecommunications Research Institute) ;
  • Woncheol, Cho (Telecommunications and Media Research Laboratory, Electronics Telecommunications Research Institute) ;
  • Kapseok, Chang (Telecommunications and Media Research Laboratory, Electronics Telecommunications Research Institute) ;
  • Young-Jo, Ko (Telecommunications and Media Research Laboratory, Electronics Telecommunications Research Institute)
  • Received : 2022.05.31
  • Accepted : 2022.10.21
  • Published : 2022.12.10

Abstract

In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.

Keywords

Acknowledgement

This work was supported by the Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (no. 2018-0-00218, Speciality Laboratory for Wireless Backhaul Communications based on Very High Frequency).

References

  1. Report ITU-R M.2412-0, Guidelines for evaluation of radio interface technologies for IMT-2020. Tech. report. ITU-R, 2017.
  2. METIS, Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society, Deliverable d1.1 scenarios, requirements and KPIs for 5G mobile and wireless systems, Tech. report, 2013.
  3. M. Bennis, M. Debbah, and H. V. Poor, Ultrareliable and lowlatency wireless communication: Tail, risk, and scale, Proc. IEEE 106 (2018), no. 10, 1834-1853. https://doi.org/10.1109/JPROC.2018.2867029
  4. G. Berardinelli, N. H. Mahmood, I. Rodriguez, and P. Mogensen, Beyond 5G wireless IRT for industry 4.0: Design principles and spectrum aspects, (Proc. of IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates), 2018, pp. 1-6.
  5. N. Brahmi, O. N. C. Yilmaz, K. Wang, Helmersson, S. A. Asharf, and J. Torsner, Deployment strategies for ultra-reliable and low-latency communication in factory automation, (Proc. of IEEE Globecom Workshops, San Diego, USA), 2015, pp. 1-6.
  6. B. Holfed, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke, I. Aktas, and J. Ansari, Wirelss communication for factory automation: An opportunity for LTE and 5G systems, IEEE Commun. Mag. 54 (2016), no. 6, 361-343.
  7. J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair, and K. Kittichokechai, 5G radio network design for ultra-reliable lowlatency communication, IEEE Netw. 32 (2018), no. 2, 24-31. https://doi.org/10.1109/MNET.2018.1700232
  8. J. Sachs, L. A. A. Andersson, J. Araujo, C. Curescu, J. Lundsjo, G. Rune, E. Steinbach, and G. Wikstrom, Adaptive 5G lowlatency communication for tactile internet services, Proc. of IEEE 107 (2019), no. 2, 325-349.
  9. O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Spatially sparse precoding in millimeter wave MIMO systems, IEEE Trans. Wireless Commun. 13 (2014), no. 3, 1499-1513. https://doi.org/10.1109/TWC.2014.011714.130846
  10. H. Imori, G. T. F. D. Abreu, O. Taghizadeh, R-A. Stoica, T. Hara, and K. Ishibashi, A stochastic gradient descent approach for hybrid mmWave beamforming with blockage and CSI-error robustness, IEEE Acesss 9 (2021), 74471-74487. https://doi.org/10.1109/ACCESS.2021.3079508
  11. R. Mendez-Rial, C. Rusu, N. Gonzalez-Prelcic, A. Alkhateeb, and R. W. Heath, Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 4 (2016), 247-267. https://doi.org/10.1109/ACCESS.2015.2514261
  12. P. Ni, R. Liu, M. Li, and Q. Liu, User association and hybrid beamforming designs for cooperative mmWave MIMO systems, IEEE Trans. Sig. Info. Process over Networks 8 (2022), 641-654. https://doi.org/10.1109/TSIPN.2022.3190740
  13. L. Pang, W. Wu, Y. Zhang, Y. Yuan, Y. Chen, A. Wang, and J. Li, Joint power allocation and hybrid beamforming for downlink mmWave-NOMA systems, IEEE Trans. Vehicular Tech. 70 (2021), no. 10, 10173-10184. https://doi.org/10.1109/TVT.2021.3103762
  14. S. Park, A. Alkhateeb, and R. W. Heath, Dynamic subarrays for hybrid precoding in wideband mmwave MIMO systems, IEEE Trans. Wireless Commnun. 16 (2017), no. 5, 2907-2920. https://doi.org/10.1109/TWC.2017.2671869
  15. F. Sohrabi and W. Yu, Hybrid digital and analog beamforming design for large-scale antenna arrays, IEEE J. Sel. Topics Signal Process. 10 (2016), no. 3, 501-513. https://doi.org/10.1109/JSTSP.2016.2520912
  16. X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems, IEEE J. Sel. Topics Signal Process. 10 (2016), no. 3, 485-500. https://doi.org/10.1109/JSTSP.2016.2523903
  17. N. A. Johansson, Y.-P. E. Wang, E. Eriksson, and M. Hessler, Radio access for ultra-reliable and low-latency 5G communications, (IEEE International Conference on Communications (ICC) Workshop on 5G & Beyond - Enabling Technologies and Applications, London, UK), 2015, pp. 1184-1189.
  18. S. Kaiser, Spatial transmit diversity techniques for broadband OFDM systems, (Proc. of IEEE Globecom, San Francisco, USA), 2000, pp. 1824-1828.
  19. S. M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J. Sel. Areas Commun. 16 (1998), no. 8, 1451-1458. https://doi.org/10.1109/49.730453
  20. J. Liu, K. Au, A. Maaref, J. Luo, H. Baligh, H. Tong, A. Chassaigne, and J. Lorca, Initial access, mobility, and usercentric multi-beam operation in 5G New Radio, IEEE Commun. Magazine 56 (2018), no. 3, 35-41.
  21. 3GPP specification TS 38.213, 3GPP; TSG RAN; NR; physical layer procedures for control (release 17).
  22. X. Chen, X. Xu, and X. Tao, Energy efficient power allocation in generalized distributed antenna system, IEEE Commnun. Lett. 16 (2017), no. 7, 1022-1025.
  23. 3GPP (3rd generation partnerhsip project: https://www.3gpp.org/), Study on channel model for frequencies from 0 to 100 GHz (Release 15), 3GPP; TR; 38.901. Tech. report, 2019. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173
  24. 3GPP specification TS 38.212, 3GPP; TSG RAN; NR; multiplexing and channel coding.
  25. R1-1701823, Evaluation assumptions for Phase 1 NR MIMO link level calibration.
  26. IEEE 802.11, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.
  27. Y. Polyanskiy, H. V. Poor, and S. Verdu, Channel coding rate in the finite blocklength regime, IEEE Trans. Inf. Theory 56 (2010), no. 5, 2307-2359. https://doi.org/10.1109/TIT.2010.2043769